
Using preference learning for detecting inconsistencies in clinical practice guidelines:
methods and application to antibiotherapy

Rosy Tsopraa,b,1,∗, Jean-Baptiste Lamya,1, Karima Sedkia

aLIMICS, Université Paris 13, Sorbonne Paris Cité, 93017 Bobigny, France, INSERM UMRS 1142, UPMC Université Paris 6, Sorbonne Universités, Paris, France
bAP-HP, Paris, France

Abstract

Clinical practice guidelines provide evidence-based recommendations. However, many problems are reported, such as contradictions
and inconsistencies. For example, guidelines recommend sulfamethoxazole/trimethoprim in child sinusitis, but they also state that there
is a high bacteria resistance in this context. In this paper, we propose a method for the semi-automatic detection of inconsistencies in
guidelines using preference learning, and we apply this method to antibiotherapy in primary care. The preference model was learned
from the recommendations and from a knowledge base describing the domain.

We successfully built a generic model suitable for all infectious diseases and patient profiles. This model includes both preferences
and necessary features. It allowed the detection of 106 candidate inconsistencies which were analyzed by a medical expert. 55 inconsis-
tencies were validated. We showed that therapeutic strategies of guidelines in antibiotherapy can be formalized by a preference model.
In conclusion, we proposed an original approach, based on preferences, for modeling clinical guidelines. This model could be used in
future clinical decision support systems for helping physicians to prescribe antibiotics.
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1. Introduction

In the 1990s, the concept of Evidence-Based Medicine was in-
troduced and defined as “the integration of best research evidence
with clinical expertise and patient values” [1]. This new paradigm
led to the redaction and diffusion of Clinical Practice Guidelines
(CPGs) by national health authorities [2]. CPGs are narrative doc-
uments providing recommendations stated by a group of experts
according to a systematic review of the available clinical evidence.
They aim at improving the quality of health care by providing
standardized best practices for diagnosis and treatment. Their de-
velopment is complex and requires time, rigor and multiple veri-
fication and validation steps to guarantee their quality [3, 4, 5, 6].
However, many problems are reported like incompleteness, con-
tradiction, inconsistency, redundancy or ambiguity within CPGs
[4]. This leads to a lack of confidence of physicians in CPGs [7],
and thus a poor consideration of CPG recommendations in their
daily routine clinical practice [8].

For verifying the quality of recommendations within CPGs,
various methods were developed. The structure of CPGs can be
verified by tools [9, 10] such as AGREE instrument [11]. These
tools focus on quality criteria, e.g. presentation of guidelines, or
independence of experts [12]. However, these methods are limited
to the verification of the structure of CPGs, and do not consider
the consistency and medical pertinence of recommendations.

The consistency of recommendations can be verified by formal
methods [13]. The recommendations are first represented using an
explicit and non-ambiguous model in a formal language. Several
Computed Interpretable Guidelines (CIG) were developed [14].
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They allow detecting ambiguity, incompleteness, inconsistency
or redundancy within CPGs [6, 15, 13, 3, 16, 17]. For exam-
ple, some authors [18, 19] state that, if narrative guidelines are
encoded into logical language (“if... then...” rules), then the gener-
ation of all possible variable combinations allows the detection of
incompleteness (i.e. variable combinations not covered by CPGs)
and inconsistencies (i.e. similar variable combinations leading to
different conclusions). But these methods are time-consuming
and dependent on the formal language. Moreover, these formal
approaches don’t verify the medical pertinence (e.g. they do not
verify that the recommended drug treatments are not contraindi-
cated for the patient).

Few approaches have been proposed for verifying the medi-
cal pertinence of recommendations. These approaches require the
formalization of the medical knowledge involved (e.g. drug prop-
erties such as contraindications) and the identification of the med-
ical principles underlying the recommendations of CPGs. How-
ever, formalizing the knowledge and the reasoning principles is a
complex task [13]. For example, in oncology, a medical domain
where multiple drugs are often prescribed, the adverse events can
be limited by checking the known adverse effects [20].

Recently, many approaches have been proposed for en-
riching recommendation by integrating additional information.
These pieces of information concern particularly patient context
(psycho-social, multi morbidity, etc.) and patient preferences
[21, 22, 23, 24, 25, 26]. For example, in multi-criteria decision
making, to recommend an appropriate manual wheelchair, user
preferences that are often conflicting must be taken into account
[27]. Nevertheless, the manual construction of preferences re-
mains complex and time-consuming. Thus, it is more appealing
to learn preferences from data, because in general, data are easily
collected or observed.

In this article, we propose a method for the semi-automatic de-
tection of inconsistencies in guidelines using preference learning,
and we apply this method to antibiotherapy in primary care. In
primary care, CPGs recommend prescribing antibiotics empiri-
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Input Objective

Label ranking

A set of instances X = {xi|i = 1 . . . n}.
A set of labels L = {lk |k = 1 . . .m}.
For each instance xi, a set of pairwise preferences of the
form lk �xi l j.

Find a ranking function that maps any x ∈ X to a
ranking �x∈ L.

Instance ranking

A set of instances X = {xi|i = 1 . . . n}.
A set of ordered labels L = {lk |k = 1 . . .m} such that:
l1 � l2 � . . . lk.
A label lk is associated with each instance xi.

Find a ranking function that allows to order a new
set of instances according to their (unknown)
preference degrees.

Object ranking
A set of objects X = {xi|i = 1 . . . n}.
A finite set of pairwise preferences xi � x j.

Find a ranking function that assumes as input a
set of objects and returns a permutation (ranking)
of this set.

Table 1: Comparison between the different ranking problems.

cally, i.e. without knowing the causative bacteria and its sus-
ceptibility to the various antibiotics. The most likely bacteria are
guessed from the infectious disease (e.g. cystitis is usually caused
by E. coli). Then, CPGs recommend an antibiotic according to
the various antibiotics features (e.g. susceptibility of the likely
causative bacteria, side effects) and the patient profile (e.g. child
or adult) [28, 29].

In order to detect inconsistencies in these CPGs, we made the
following hypotheses: 1) it is possible to learn a preference model
from the recommendations and a knowledge base describing the
domain; 2) a generic model can be defined for all infectious dis-
eases and all patient profiles encountered in CPGs; and 3) this
preference model can be used to detect inconsistencies in CPGs.

The rest of the paper is organized as follows. Section 2 gives
background about preference learning, and describes the opti-
mization algorithm we used and the antibiotherapy knowledge
base we previously designed. Section 3 describes the preference
learning. Section 4 describes the detection of inconsistencies and
their validation by a medical expert. Section 5 discusses the meth-
ods and the results obtained, and finally, concludes.

2. Background

2.1. State of the art in preference learning

Preferences are basically acquired in two ways: i) by elicitation
from the user (for instance through a sequence of queries/answers)
or ii) by directly learning them from data. Preference elicita-
tion is often time-consuming, especially if the number of alter-
natives/outcomes is large. Moreover, different elicitation tech-
niques are likely to provide different results. It is then more ap-
pealing to learn preference from data which is easy to observe and
collect. Preference learning is one of the research problems that
have recently received considerable attention in disciplines such
as artificial intelligence, machine learning, data mining, decision
making and others. It aims to learn and construct a preference
model from observed preference information. Once the prefer-
ence model learned, it can be used for decision making for in-
stance. Preference learning can be formalized within various set-
tings, depending for example on the underlying preference model
and the type of input provided to the learning system. We can dis-
tinguish three common problems in preference learning [30]: i)
learning from label preferences (also designed as label ranking in
the literature because frequently, the predicted preference relation
is required to form a total order), ii) learning from instance prefer-
ences (instance ranking) and iii) learning from object preferences
(object ranking). Table 1 summarizes the different ranking prob-
lems.

In label preferences problem [31, 32], the training data con-
tains a set of instances. A set of pairwise comparisons between
labels is associated with each instance, expressing that one label
is preferred over another for that instance. The objective is to use
these pairwise preferences for predicting a ranking function that
attributes for any instance a ranking (a total order in general) of
all possible labels. Namely, the task is to rank the set of labels
for a new instance (label ranking). Label ranking can be consid-
ered as a generalization of the supervised classification problem
where an order over class labels is associated with an instance
instead of only one class label. As an example of a label rank-
ing problem, consider a set of labels L representing three types
of activities: football, tennis and basket. The training data con-
tains a set of students who have to give a list of pairwise pref-
erences between activities (e.g. {(Adrien, [ f ootball � tennis]),
(Marie, [tennis � f ootball]}). Thus, the aim is to compute a
ranking over the labels for each instance. For example, the pos-
sible prediction of the learnt function for a student x is football �
basket � tennis.

In the setting of learning from instance preferences problem
[33], the input contains a set of ordered labels and a set of in-
stances, each one associated with a label. The objective is to find a
ranking function that allows ranking a given new set of instances.
In case where there are two ordered labels, the problem of learn-
ing is often called bipartite ranking problem [34]. In case where
there are more than two ordered labels, the problem of learning is
often called multipartite-ranking problem [35].

Concerning learning from objects [36, 37], the objective is to
learn a model that allows determining which object is preferred to
another. The training data is given in the form of pairwise compar-
isons between objects. For this type of learning problems, there
is no supervision since no class label is associated with an object
and each object is not necessarily represented by a set of features
or attributes. As an example, to rank query results of a search en-
gine, user clicks on some of the links in the query result and not
on others can be exploited to provide training information. Thus,
selected pages are preferred over pages that are not clicked.

Two approaches can be distinguished for preference modeling
and learning: quantitative and qualitative approaches. Quantita-
tive preferences learning [38, 39] consist mainly to learn a utility
function on training data. This function assigns a utility degree
(or a score) to each alternative (instance, object or label) follow-
ing the learning problem. For learning problems that are based on
qualitative approach [40, 41, 42, 43, 44], the objective is to learn
a binary preference relation that compares each pairs of alterna-
tives.

When it comes to modeling utility functions, the task is rather
more complicated since users may not be used with this formal-
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ism and the problem size could be very large. Utility functions
(for example, the one a user is supposed to use while making de-
cisions) can be inferred or estimated from past decisions. In [45],
this problem is solved by imposing constraints derived from the
data over the set of all utility functions. One could go one step fur-
ther by searching for the optimal utility function given the avail-
able constraints. Among first works dealing with deriving utility
functions from data, one can mention [46] where the authors aim
at extracting reward functions given optimal behaviors in the con-
text of Markov Decision Processes. The main issues dealt with
the literature last years concern noise and data inconsistencies and
uncertainty, large search spaces and taking into account data se-
quence, etc. In [47], the authors proposed an approach to learn
utility functions allowing to monitor requirements of a dynami-
cally adaptive system. The learned utility functions map at run
time monitoring information to a value assessing how well a re-
quirement is satisfied.

Once the preferred model is learned, there is need to measure
its quality of prediction. For this, different performance measures
can be used such as precision, recall, NDCG (Normalized Dis-
counted Cumulative Gain), etc. In addition, preference learning
methods require optimization algorithms. In this study, we will
use the Artificial Feeding Birds (AFB) metaheuristics [48, 49].
We developed this metaheuristics in previous works, and we de-
scribe it in the following section.

2.2. Artificial Feeding Birds (AFB) metaheuristics

Nature-inspired metaheuristics [50, 51] are an optimization ap-
proach, which often leads to simple, efficient and adaptable al-
gorithms. In this work, we chose Artificial Feeding Birds (AFB)
[48, 49], a recent metaheuristic inspired by the behavior of pi-
geons.

AFB considers a population of artificial birds. The position
of a bird corresponds to a candidate solution to the optimization
problem. The optimization process aims at minimizing the cost()
function, (i.e. finding x such as cost(x) is as low as possible).
The value returned by the cost() function is associated with the
presence of food: if the value of the cost() function for the new
position of a bird is lower than his previous lowest value, the bird
has found some food and he keeps his current position in memory.

In each iteration of the algorithm, each bird performs a move.
Four possible moves are considered: (1) the bird walks to a close
random position, (2) the bird flies to a completely random posi-
tion, (3) the bird flies back to the best position he has encountered
so far, and (4) the bird flies to join the position of another random
bird. For a given bird, the next move is determined as follows: if
the bird has flown in the previous cycle, he walks. If the bird has
found a better solution in the previous cycle, he walks. Otherwise,
the next move is chosen randomly, with different probabilities as-
sociated with each move. Two sizes of birds are considered, and
the fourth move (join another bird) can only be performed by the
largest birds (representing 25% of the population).

The optimization problem is defined by three functions: cost(),
the function to minimize, f ly(), a function that returns a random
position in the solution space, and walk(i), a function that modifies
the current position of the bird i by performing a small random
move.

The metaheuristic takes 5 parameters:
- n = 20, the number of artificial birds,
- r = 0.75, the ratio of small birds in the total bird population,
- p2 = 0.01, the probability that a bird chooses move 2,
- p3 = 0.67, the probability that a bird chooses move 3,
- p4 = 0.07, the probability that a bird chooses move 4.

Figure 1: General model of the knowledge base.

The parameter values given here are the ones we used; they
correspond to the default values proposed in [49]. The AFB al-
gorithm is known to have a low sensitivity to parameter values,
and these values were successfully used in very different opti-
mization problems (non-linear global optimization on benchmark
functions, neural network training, combinatorial optimization).
The metaheuristics algorithm is given in Supplementary File 1.

2.3. Antibiotherapy knowledge base
In previous works [28, 29], we designed an antibiotherapy

knowledge base for helping physicians with empirical prescrip-
tion of antibiotics. The knowledge base contains information re-
lated to 11 infectious diseases, the 50 antibiotics marketed for use
in primary care in France, and 21 patient profiles.

Figure 1 shows the general model of the knowledge base. In-
fectious diseases are associated with the likely causative bacteria
(one or several; several types of bacteria can cause the same dis-
ease). A patient profile is described by the age class and the pres-
ence or absence of pregnancy, allergy, and history of antibiotic
treatment. A clinical situation corresponds to the intersection of
an infectious disease and a patient profile. Finally, a given antibi-
otic prescribed for a given clinical situation is called a case in the
knowledge base. It is the lowest granularity level in the knowl-
edge base. Each case has an integer recommendation rank, which
is 0 if the antibiotic is not recommended by French CPGs in the
clinical situation, 1 if it is recommended as a first-line treatment,
2 if it is recommended as a second-line treatment, and so on (up
to 4).

In addition, cases are characterized by 11 features (listed in Ta-
ble 2). In the paper, each feature is identified by a short name,
such as protocol. For a given feature, the value may depend on
the antibiotic, the patient profile, the infectious disease and/or the
likely causative bacteria. For example, no side e f depends only
on the antibiotic, whereas no contraindication depends on the an-
tibiotic and the patient profile (e.g. a given antibiotic may be
contraindicated for children but not for adults). Each feature is
Boolean (True if the feature holds for the case and False other-
wise), with possible missing values (Unknown) when no data is
available in the medical literature. For each feature, True cor-
responds to an advantage for the antibiotic, whereas False is a
disadvantage.

The knowledge base was built and populated by a medical
doctor (RT) through a 2 steps-process. In step 1, RT extracted
the features of antibiotics and their dependence relationships
[28, 29], from the manual analysis of six CPGs related to uri-
nary [52, 53] and respiratory [54, 55, 56, 57] infections. In
step 2, RT populated the knowledge base. Because of the lack
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# Feature [short name]
Definition

Antibiotic Patient
profile

Infectious
disease

Causative
bacteria

1 Naturally active against the causative bacterium [naturally active]
Whether the causative bacterium is described as sensitive or of intermediate
sensitivity for the antibiotic (e.g. Amoxicillin is naturally active against
Group A streptococci)

X X

2 Probably active against the causative bacterium [probably active]
Whether the frequency of resistance in the causative bacterium is less than
Y% (*) for the antibiotic (e.g. Ceftriaxone is probably active against E.coli)

X X X

3 Clinical efficacy proven in the disease [proved]
Whether the antibiotic is described as clinically effective for treating the
infection OR is (or has been) indicated/recommended for the infection (e.g.
Penicillin G has proven its clinical efficacy for pharyngitis treatment)

X X

4 Absence of contraindications for the patient [no contraindication]
Whether there is no absolute contraindication of the antibiotic for the
patient profile (e.g. Pristinamycin is not contraindicated if the child is more
than 6 years old)

X X

5 Convenient protocol [protocol]
Whether the antibiotic is prescribed for oral administration AND for a
duration of less than Z (*) days (e.g. Fosfomycin trometamol has a
convenient protocol in uncomplicated cystitis)

X X

6 Non-precious class [not precious]
Whether the antibiotic doesn’t belong to a class of drugs that must be
preserved for more serious infections (e.g. Amoxicillin is a non-precious
class in sinusitis)

X X

7 Absence of serious and frequent side effects [no side e f ]
Whether there is no serious side effects mentioned AND the frequency of
side effects is sufficiently low for antibiotic prescription to be allowed (e.g.
Fosfomycin trometamol gives no serious and rare side effects)

X

8 High level of efficacy [e f f icacy level]
Whether the antibiotic is described as very effective (high clinical cure
percentage, e.g. Levofloxacin is very effective in prostatitis)

X X

9 Narrow antibacterial spectrum [spect]
Whether the antibiotic is described as having a “narrow” antibacterial
spectrum (e.g. Nitrofurantoin has a narrow activity spectrum)

X

10 Low level of ecological adverse effects [low eco risk]
Whether the antibiotic is described as having a low risk of promoting
bacterial resistance (e.g. Pivmecillinam has a low level of ecological risk)

X

11 Taste [taste]
Whether the antibiotic has an acceptable taste for the patient (e.g.
Cefuroxime axetil has a bad taste and thus is not acceptable for children)

X X

Table 2: The 11 features of antibiotics in the knowledge base. The last four columns indicate on which the feature value depends. (*) Y and Z are values specific to each
infectious disease.

of existing antibiotic knowledge base able to describe the fea-
tures identified in step 1, only textual resources were used to
populate the knowledge base. RT manually extracted the val-
ues for each feature (i.e. True, False, or Unknown) from seven
French CPGs [52, 53, 54, 55, 56, 58, 59], two international CPGs
[60, 61], five antibiotic guidelines produced by national author-
ities [62, 63, 64, 65, 66], and one reference textbook on infec-
tious diseases [67]. For example, for fosfocmycin trometamol in
women cystitis, protocol = True was extracted from the follow-
ing CPG excerpt [53]: “Fosfomycin trometamol is recommended
in women cystitis because it can be given in single dose”. Each
value was then blindly validated by two antibiotic specialists dur-

ing a 5-round Delphi Process (14.7% of the values were modi-
fied).

Finally, the knowledge base has been formalized as an OWL
2.0 ontology. It contains 144,038 RDF triples describing 5,696
classes, 19 properties and 34,483 axioms, and belongs to the
ALC(D) family2 of description logics (DL).

4



Case xa
i (antibiotic) xs

i (clinical situation) no contraindication no side e f protocol ∈ Yreco

x1 Drug A Situation X False False False
x2 Drug B Situation X True False False
x3 Drug C Situation X True True False yes
x4 Drug D Situation X True False True yes
x5 Drug E Situation X Unknown True True
x6 Drug A Situation Y Unknown False False
x7 Drug B Situation Y True False False
x8 Drug C Situation Y True True False
x9 Drug D Situation Y True False True yes
x10 Drug E Situation Y True True True yes

Table 3: Simple example showing the structure of the knowledge base.

3. Building the preference model

3.1. Modeling the knowledge base
With regard to preference learning, we consider an instance to

be a given antibiotic in a given clinical situation (i.e. what we
called a case in the ontology, Figure 1). Building a preference
model from the case features and the recommendations of CPGs
is an instance learning problem (as described in section 2.1). In
the knowledge base, there are 5 recommendation ranks: recom-
mended as 1st, 2nd, 3rd, 4th line of treatment (R1,R2,R3,R4, re-
spectively) or not recommended (NR), which correspond to 5 la-
bels that are ordered (R1 � R2 � R3 � R4 � NR). There are
102 cases labeled R1, 62 labeled R2, 30 labeled R3, 2 labeled R4
and 3104 labeled NR. Since there are very few cases having the
R3 and R4 labels, for facilitating the learning of preferences, we
divide this multipartite-ranking problem in two bipartite ranking
problems. In the first problem, we consider the two following la-
bels: R1 vs R2 ∪ R3 ∪ R4 ∪ NR (i.e. all cases not recommended as
first-line treatment are grouped together). In the second problem,
the labels are: R1∪R2∪R3∪R4 vs NR (i.e. all cases recommended
are grouped together whatever their recommendation rank). Thus,
we will learn two different preference models, respectively named
M1 and Many, one for each problem. The two models will be
learned following the same method, described below.

We model the antibiotic knowledge base as a case space X =
{x1, ...xi, ..., xn} with xi = (xa

i , x
s
i , xi,1, ..., xi, j, ..., xi,p) where xa

i is
the identifier of the antibiotic, xs

i is the identifier of the clinical
situation, and xi, j are the feature values, with xi, j ∈ {True =
+1, False = −1,Unknown = 0}. n is the number of cases and p
is the number of features (p = 11). We considered the 66 clinical
situations for which at least one recommendation exists in CPGs,
and the 50 antibiotics available on the market in primary care in
France in 2014. Consequently, n = 66 × 50 = 3300.

In our formalization, we added xa
i and xs

i in cases, in order to
permit having several cases with the same feature values in set X,
provided that the antibiotic or the clinical situation differs. How-
ever, xa

i and xs
i are not considered as features for the purpose of

learning. We also define S, a partition of X according to clinical
situations: S = {S1,S2, ...,Sk, ...} where Sk is the set of all cases
sharing a given clinical situation k: Sk = {x ∈ X | xs

i = k}.
Finally, we represent the two labels as a set of two classes

Y = {Yreco,Ynot reco} which is a partition of the case space X.
Yreco contains the cases recommended (in first line of treatment
forM1, and in any line forMany), andYnot reco contains the others.
Therefore,Yreco is preferred toYnot reco (writtenYreco � Ynot reco).

2AL: attribute language (including atomic negation, concept intersection, uni-
versal restriction, existential qualification limited to class Thing), C: complex
negation, (D): use of datatypes [68].

Feature N j w j Category

no contraindication 0% - Necessary

no side e f 50% 0.2 Preference
protocol 25% 0.3

tness 10% Threshold
tpre f 0.5

Table 4: Results of the learning process on the example of Table 3.

Table 3 shows the structure of the knowledge base on a simplified
example with only 5 antibiotics, 2 clinical situations, p = 3 fea-
tures and n = 10 cases.

3.2. Determining necessary and preference features

We make the hypothesis that two categories of features exist:
necessary features and preference features. Necessary features are
mandatory for prescribing the antibiotic: if the feature does not
hold for an antibiotic in a clinical situation, the antibiotic should
not be prescribed and thus it is not recommended (necessary fea-
tures can be viewed as constraints). On the contrary, preference
features are not mandatory; however, an antibiotic having a pref-
erence feature is preferred to another antibiotic without the prefer-
ence feature. For example, the absence of contraindications may
be a necessary feature while the low rate of adverse effects may
be a preference feature.

In order to learn which features are necessary, for each feature j
(with 1 ≤ j ≤ p) we compute N j, the percentage of recommended
cases for which the feature j is not necessary to recommend the
antibiotic, i.e. feature j is not True but the antibiotic is neverthe-
less recommended in guidelines:

N j =

∣∣∣{xi ∈ Yreco | xi, j , 1}
∣∣∣

|Yreco|
(1)

Table 4 shows the computed values for N j on the simplified
example of Table 3. In an “ideal” error-less system, a necessary
feature has N j = 0 (e.g. feature no contraindication in the exam-
ple). In real life, there may be a few errors. Thus, we consider as
necessary all features j having N j ≤ tness, where tness is a thresh-
old that will be learned later. We define Fness and Fpre f , the sets
of necessary and preference features, respectively (each feature
being identified by its index).

Fness =
{
j ⊆ {1, 2, ..., p} | N j ≤ tness

}
(2)

Fpre f = {1, 2, ..., p} \ Fness (3)
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In the example (Table 4), the learning process leads to tness =

10%. This means that no contraindication is a necessary feature,
whereas protocol and no side e f are preference features.

3.3. Defining the utility function

For preference features, we define a utility function f : X → R
that allows ordering cases according to their degree of preference,
i.e. f (xi) ≥ f (x j)⇒ xi � x j. We define f as a linear combination
of the preference features:

f (xi) =
∑

j∈Fpre f

xi, j × w j (4)

The weights w j will be learned later. The utility function quan-
tifies the utility of an antibiotic in a clinical situation. However,
the utility is meaningless per se, and it can only be exploited rela-
tively to the utility of other antibiotics. For example, an antibiotic
with a low utility could be recommended if no better antibiotic
exists in a given clinical situation. Moreover, the antibiotics rec-
ommended may not be limited to the one with the best utility:
other antibiotics with a high utility, but slightly lower than the best
one, might be considered as recommended too. Consequently, in
a given clinical situation, we consider as recommended all antibi-
otics having a utility highest to the best utility found in this clinical
situation minus tpre f , a second threshold that must be learned.

In the example, Table 4 shows the learned weights and thresh-
olds. The resulting f (xi) are given in the right part of Table 5. For
example, for case x4, f (x4) = False × 0.2 + True × 0.3 = 0.1 (we
remind that False = −1 and True = 1).

3.4. Determining antibiotics recommended by the preference
model

For each clinical situationSk ∈ S, the antibiotics recommended
by the preference model can be determined in three steps. First,
we compute Sk cand, the set of candidate cases that can be pre-
scribed with regards to necessary features:

Sk cand =
{
xi ∈ Sk | @ j ∈ Fness, xi, j , 1

}
(5)

If Sk cand = ∅, no antibiotic is recommended by the preference
model and the process stops here.

Second, we determine xbest, the case ranked the highest by the
utility function:

xbest ∈ Sk such as f (xbest) = max( f (xi) | xi ∈ Sk cand) (6)

Third, we compute Sk reco, the set of cases classified as recom-
mended, and including all candidate cases from Sk cand for which
the utility function is higher than (or equal to) the best value found
previously minus the threshold tpre f :

Sk reco =
{
xi ∈ Sk cand | f (xi) ≥ f (xbest) − tpre f

}
(7)

In the example, the right part of Table 5 indicates which cases
belong to Sk cand and Sk reco. The example has two clinical situa-
tions X and Y. There is a best utility value f (xbest) for each clinical
situation (shown in bold in Table 5). Then, for each clinical sit-
uation, we determine recommended cases using formula 7. For
example, in situation X, x4 has the best utility, and is therefore
recommended. x3 has a lower utility than x4, but not lower than
the utility x4 minus tpre f = 0.5. Thus, x3 is recommended too.
On the contrary, x2 has a utility lower than the utility x4 minus
tpre f = 0.5, and therefore is not recommended.
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Figure 2: The PR curve (in green for modelM1 and in red for modelMany; the
dots corresponds to z = 1).

3.5. Optimizing weights and thresholds

In order to learn necessary features and preferences, we need
to find the optimal values for the weights w1, ...,wp and the two
thresholds tness and tpre f . The values of weights and thresh-
olds were searched between 0 (the feature has no importance at
all) and 1 (the feature has the maximal importance). The op-
timal weights and thresholds should minimize the total number
of errors E, i.e. the number of recommended cases classified
as non-recommended (false negatives) and the number of non-
recommended cases classified as recommended (false positive) by
the preference model:

E =
∑

k

z×|Yreco ∩ (Sk \ Sk reco)|+(2−z)×|Ynot reco ∩ Sk reco| (8)

where z is a coefficient that allows giving more importance to
either type of errors (false negatives or false positives). By chang-
ing the value of z, it is possible to obtain different results in terms
of precision and recall, and to produce the PR curve (precision -
recall).

This is an unconstrained global non-linear optimization prob-
lem with a solution space of p + 2 dimensions. We used the
Artificial Feeding Birds (AFB) metaheuristics [48, 49] for solv-
ing the problem. The system has been implemented in Python
3 and executed with PyPy 3, a Python interpreter that includes a
JIT (Just-In-Time) compiler. The cases were extracted from the
OWL ontology. We used two open source Python module: Owl-
ready for ontology-oriented programming [69], and Metaheuris-
tic_Optimizer for optimization with AFB.

Figure 2 shows the PR curve. For the rest of the analysis, we
fixed z to 1 (i.e. both types of errors have the same weight). We
performed 20 runs of the optimization program and we stopped it
after 15,000 solutions were tested. We kept the best result found.
For M1, we obtained E = 50 (14 false positives and 36 false
negatives), leading to a sensitivity/recall of 64.7%, a precision
of 82.5%, and a specificity of 99.6%. For Many, we obtained
E = 82 (32 false positives and 50 false negatives), leading to a
sensitivity/recall of 75.5%, a precision of 82.0%, and a specificity
of 99.0% (corresponding to the dots on the PR curve).
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Case xa
i (antibiotic) xs

i (clinical situation) no contraindication no side e f protocol ∈ Yreco f (xi) ∈ Sk cand ∈ Sk reco

x1 Drug A Situation X False False False -
x2 Drug B Situation X True False False -0.5 yes
x3 Drug C Situation X True True False yes -0.1 yes yes
x4 Drug D Situation X True False True yes 0.1 yes yes
x5 Drug E Situation X Unknown True True -
x6 Drug A Situation Y Unknown False False -
x7 Drug B Situation Y True False False -0.5 yes
x8 Drug C Situation Y True True False -0.1 yes
x9 Drug D Situation Y True False True yes 0.1 yes yes
x10 Drug E Situation Y True True True yes 0.5 yes yes

Table 5: Example of Table 3 with the values of the utility function f (xi) that are computed during preference learning, and indicating which cases belong to Sk cand and
Sk reco.

M1 Many

j Feature N j w j Category N j w j Category

1 naturally active 3.9% -

Necessary

8.2% -

Necessary2 probably active 10.8% - 15.3% -
3 proved 1.0% - 0.5% -
4 no contraindication 3.9% - 3.6% -

5 protocol 51.0% 0.26

Preference

52.0% 0.97

Preference

6 not precious 41.2% 0.73 55.1% 0.16
7 no side e f 42.2% 0.47 49.5% 0.25
8 e f f icacy level 33.3% 0.0 40.8% 0.026
9 spect 84.3% 0.0 89.8% 0.092
10 low eco risk 81.4% 0.2 86.7% 0.052
11 taste 100.0% 0.71 100.0% 0.98

tness = 15% tpre f = 0.015 tness = 20% tpre f = 0.77

Table 6: Results of the learning process (N j, learned weights and thresholds, for z = 1) for the two preference modelsM1 andMany.

Table 6 shows the results of the learning process, for z = 1,
for the two preference models M1 and Many (i.e. considering
only cases recommended as first-line treatment or as any line
of treatment, see section 3.1). 4 necessary features are found
in both models: naturally active, probably active, proved and
no contraindication. The seven others are preference features.
For determining the first-line treatments (R1 with modelM1), the
most important preference features are not precious, taste and
no side e f . On the contrary, for determining treatments that are
recommended in any ranks (R1 ∪R2 ∪R3 ∪R4 with modelMany),
the most important preference features are taste and protocol. In-
deed, taste is more important than what we may expect, because
many clinical situations involve children and children refuse to
take drugs with a bad taste. Two features, e f f icacy level and
spect, have no impact for determining the first-line treatments and
a very low impact for determining the recommended treatments in
any ranks.

4. Detection of inconsistencies in CPGs

4.1. Methods

The 106 errors obtained during preference learning can be seen
as candidate inconsistencies in CPGs: for those cases, the recom-
mendation of the CPGs does not match the result obtained using
the preference model we built from the whole guideline recom-
mendations. Therefore, our hypothesis is that there might be in-
consistencies in the CPGs for those cases.

All these candidate inconsistencies were manually verified by
a medical expert (RT). For each candidate, the inconsistency was

confirmed if the medical expert retrieved arguments within CPGs
in contradiction with the level of recommendation given in CPGs.
If no contradictions were found within CPGs, then the medical
expert searched for contradictions in the argumentation of other
guidelines (e.g. previously published CPGs, CPGs from other
countries). Then the medical expert categorized the inconsisten-
cies into various groups.

An example of contradiction follows. The CPG [70] says “the
proof of efficacy of fosfomycin in cystitis with risk of complica-
tion (including pregnancy) is not sufficient”, but, surprisingly, the
CPG nevertheless recommends fosfomycin for the treatment of
cystitis in pregnant women.

4.2. Medical analysis of the candidate inconsistencies

Table 7 summarizes the various categories of candidate incon-
sistencies obtained from preference learning and the number of
cases in each category. The expert validated 51.9% (55/106) of
the candidates as inconsistencies in CPGs. The medical expert
detected 29 contradictions related to the features probably active,
11 to proved, 9 to no contraindication, 4 to spect, and 2 related
to a mix of several preference features.

Two categories of contradictions were distinguished:
(1) For 40 cases, CPGs recommend an antibiotic whereas there

are arguments in the same or another CPG for not recommend-
ing this antibiotic. For example, the CPG [57] recommends sul-
famethoxazole/trimethoprim in child sinusitis, but the CPG also
states “because of the evolution of frequency of acquired resis-
tance, sulfamethoxazole/trimethoprim is not recommended in si-
nusitis”.
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Categories M1 Many Total *
Inconsistencies in CPGs

Related to probably active 11 29 29
Related to proved 6 8 11
Related to no contraindication 5 9 9
Related to spect 4 0 4
Related to several features 2 0 2

Flaws in the knowledge base
Missing features 0 9 9
Precision of the coding 5 3 7
End of drug commercialization 0 1 1

Flaws in the preference model
Missing principles 3 7 7
Genericity of the model 2 9 9

Not categorized 12 7 18
Total 50 82 106 *

Table 7: Categorization of the candidate inconsistencies obtained from preference
learning. (*) The “total” column is not the sum of the two previous columns,
because 26 inconsistencies were discovered twice, once with the M1 model and
once with theMany model.

(2) For 15 cases, CPGs do not recommend a given antibiotic,
whereas there are arguments in the same or another CPG for rec-
ommending this antibiotic in similar clinical situation. For ex-
ample, in otitis with conjunctivitis, CPG [57] do not recommend
amoxicillin and prefers the combination of amoxicillin/clavulanic
acid; this choice is justified as follows: “Amoxicillin/clavulanic
acid should be preferred because of a strong suspicion of H. in-
fluenzae infection”. On the contrary, in otitis without conjunc-
tivitis, CPG [57] recommends amoxicillin rather than the amoxi-
cillin/clavulanic acid combination and justifies this choice as fol-
lows: “Amoxicillin should be preferred because (. . . ) it is active
against H. influenzae strains”.

The expert classified 16.0% (17/106) of the candidate inconsis-
tencies as caused by flaws in the antibiotic knowledge base. Three
categories of flaws were distinguished:

(1) For 9 cases, CPGs consider additional features that were
missing in the knowledge base: bioavailability (i.e. antibiotic oral
absorption), minimum inhibitory concentration (i.e. the lowest
antibiotic concentration which prevents the growth of bacterium),
and marketing authorization. For example, the preference model
recommends levofloxacin in uncomplicated cystitis in women, but
the argumentation of CPG [70] says “ levofloxacin is not recom-
mended because it does not have the marketing authorization” for
this clinical situation in France.

(2) For 7 cases, the coding of features as Boolean is not
precise enough. The two features involved are no side e f and
not precious. For these cases, a more fine-grained gradation in
at least three levels (e.g. none/moderate/high) is required. For
example, the preference model recommends pristinamycin and
telithromycin for pneumonia in children over the age of 12 years
with betalactam allergy. Pristinamycin is recommended in CPG,
but not telithromycin [54]. The argumentation of guidelines says
that both may cause side effects, but telithromycin is associated
with side effects more serious than pristinamycin. This informa-
tion is missing in the knowledge base because values are coded as
Boolean.

(3) For 1 case, the antibiotic recommended by the preference
model is not marketed any more. The antibiotic should be re-
moved from the knowledge base.

The expert classified 15.1% (16/106) of the candidate incon-
sistencies as caused by flaws in the preference model. Two cate-

gories of flaws were distinguished:
(1) For 7 cases, additional principles not considered in the

model seemed to be used in CPGs. Two such principles were iden-
tified: (a) When several antibiotics are recommended, CPGs often
propose antibiotics belonging to different therapeutic classes, be-
cause some patients have drug class allergy (e.g. penicillin al-
lergy), and thus it is better to propose a wide variety of drug
classes. (b) In a very few number of cases where no antibiotics
have the necessary features, CPGs recommend some antibiotics
without one of the necessary features (probably active).

(2) For 9 cases, the preference model seems different for chil-
dren than from adult patient, whereas we hypothesized that a
generic model exists for all patients and diseases (hypothesis #2
in introduction). More specifically, for these 9 cases, CPGs give
more importance to side effects for children. For example: In
adult sinusitis, CPGs recommends pristinamycin whereas in child,
CPG [57] says “pristinamycin is not recommended because of the
risk of side effects”. However, no side effect specific to children
(e.g. developmental disorders) were mentioned.

Finally, 17.0% (18/106) of the candidate inconsistencies could
not be categorized by the medical expert.

5. Discussion and conclusion

In this paper, we showed that strategies followed by CPGs for
establishing therapeutic recommendations in antibiotherapy can
be formalized by a preference model. This model can be learned
from the CPGs and a knowledge base describing the domain. In
addition, the model allowed the detection of 106 candidate incon-
sistencies in CPGs, 55 of which were then validated by a medical
expert. We also identified several flaws in the knowledge base.
To the best of our knowledge, this is the first study that proposes
using preference learning on drug properties for detecting incon-
sistencies within CPGs.

5.1. Discussion on the preference model and the learning process
Our preference model is based on a quantitative approach. It

uses a simple utility function, which has the interest of produc-
ing results easily understandable by medical experts and physi-
cians. In addition, the method we proposed allowed the learning
of a single model from several clinical situations, each situation
including several cases, and the various features can depend on
the antibiotic, the patient profile, the infectious disease and/or the
causative bacteria. As a consequence, the feature values can be as-
signed at various levels in the knowledge base. We used a formal
ontology in OWL 2.0 for managing the knowledge base and for
obtaining the feature values for each case, using inheritance. De-
spite the specificity of each infectious disease and patient profile,
we successfully built a generic model satisfying all clinical situa-
tions described in CPGs, with the exception of 9 cases related to
children.

Our utility function does not consider interactions between fea-
tures, while in antibiotherapy, there might be some interactions.
For example, two features a and b might have an impact on the
utility, while the impact of a ∪ b is not the sum of the impact of
a and b alone. More sophisticated methods, such as Choquet in-
tegral [71], can capture the dependencies between features. In the
future, we will aim to study this point.

The proposed method is interesting since it allowed learning
not only preferences, but also necessary features (i.e. constraints)
that are very important in preference reasoning. In the liter-
ature, few models exist that permit modeling both constraints
and preferences [72]. For example, let us consider an antibiotic
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AFB ABC FA
Mean 83.60 86.95 131.4
Best 82.00 82.00 118.0

# best 7 2 0
Std. deviation 1.319 6.119 6.946

Time 25.6s 25.6s 25.8s

Table 8: Performance comparison between three metaheuristics: Artificial Feed-
ing Bird (AFB), Artificial Bee Colony (ABC) and Firefly Algorithm (FA). # best
is the number of times the best known result (82.0) was found, over the 20 runs.

having protocol feature True but no contradiction False. If the
learned preference model considers only preference features (e.g.
no contradiction is preferred to protocol) as in most proposed
learning preferences methods, then it is possible to recommend
this antibiotic. However, in our proposed model, it cannot be rec-
ommended since the model contains also necessary features or
constraints (such as no contradiction) which can be viewed as a
propositional formula.

For optimizing weights and thresholds, we reused the AFB
metaheuristics. We chose metaheuristics in general because they
are known to adapt quite well to many kinds of problems, what-
ever the size of the solution space is. Furthermore, in the litera-
ture, metaheuristics have already been used for preference learn-
ing [73]. AFB was chosen since it results from our previous
works, and because it was found to be especially adaptable, and
quite independent from parameter values.

AFB seems efficient for the problem presented here. We com-
pared it with two other metaheuristics, Artificial Bee Colony
(ABC) [74] and Firefly Algorithm (FA) [75], for the learning of
the Many model with z = 1. We performed 20 runs for each al-
gorithm. For each run, the optimization process was stopped after
15,000 solutions were tested. Table 8 shows the mean results for
each algorithm. AFB yielded the best results, and found the low-
est value (82.0) in 7 runs. ABC found the lowest value in only 2
runs. On the contrary, FA never found the lowest value. There-
fore, AFB seems an interesting algorithm for preference learning.

We used the default parameter values for AFB. We performed
parameter optimization a posteriori, and we obtained better re-
sults with slightly different values: p2 = 0.0049, p3 = 0.78 and
p4 = 0.068. With those values, the mean result was 82.9 (instead
of 83.6), and the best result was obtained 11 times out of 20 runs
(instead of 7 times). However, the parameter optimization took
half a day, thus it may not worth the time to perform it since the
gain is low. This confirms previous results suggesting that AFB
has a low sensitivity to parameter values.

5.2. Medical discussion of results

The learning process allowed the identification of two types of
features: necessary vs preference. This confirms the results of pre-
vious works based on the manual analysis of CPGs [28, 29]. The
distinction between necessary and preference features allows clas-
sifying antibiotics in 3 categories, for a given clinical situation:
(1) the inappropriate antibiotics that should never be prescribed
because they are not efficient for treating the infectious disease or
they cannot be used for a given patient (i.e. antibiotics not having
the necessary features), (2) the appropriate antibiotics that could
be prescribed, but that are not the ones recommended because bet-
ter antibiotics exist (i.e. antibiotics having the necessary features,
but not preferred), and (3) the recommended antibiotics (i.e. an-
tibiotics having the necessary features, and preferred). This clas-
sification into 3 categories could be helpful in clinical practice.

In addition, the learning process identified the weight of antibi-
otic features. Not surprising, the feature protocol has an impor-
tant weight. Indeed, in clinical practice, physicians often prefer to
prescribe drugs with short treatment duration and/or single daily
dose to increase patient observance. The feature not precious has
also an important weight for antibiotic recommended in first line
(modelM1). This feature is specific to antibiotherapy where the
objective is to rationalize the use of antibiotics because of bacteria
resistance. Thus, some antibiotics are “preserved”, and their use
is restricted to specific clinical situations. The weight of the fea-
ture no side e f may seem lower than what we may expect. How-
ever, this can be explained because infectious diseases often re-
quire short treatments (one to 7 days), and thus the probability to
develop side effects is lower than for longer treatments. Surpris-
ingly, the features spect and low eco risk have a low weight. Since
a current French campaign [76] encourages the use of antibiotics
with narrow spectrum and low ecological risk, we expected higher
weights for these features.

The preference learning on the antibiotic knowledge base al-
lowed the detection of 106 errors. The analysis of these errors
by a medical expert leads to the identification of 55 inconsisten-
cies in CPGs (defined as contradictions between arguments re-
trieved in CPGs and the level of recommendation given in CPGs).
Therefore, about half of the candidate inconsistencies were man-
ually validated as inconsistencies in the CPGs. These inconsis-
tencies could correspond to two subcategories: (i) either the level
of recommendation given in CPGs is correct, but the arguments
retrieved in CPGs are in contradiction, or (ii) the arguments re-
trieved in CPGs are correct, but the level of recommendation given
in CPGs is in contradiction. Distinguishing between those two
subcategories would require to gather all the experts who wrote
the CPGs, which is hardly feasible.

5.3. Perspectives

In the future, we will aim at improving our approach in various
ways. The missing antibiotic features (e.g. bioavailability) and
medical principles identified during the medical analysis could be
added to the knowledge base and the preference model, respec-
tively. We would also like to test our approach in other med-
ical domains. However, this would require a preliminary work
by medical experts to identify the drug features involved in the
recommendations, and the constitution of a knowledge base for
representing the domain. The constitution of this knowledge base
may be a long process: for antibiotherapy, it took several months
and 5 rounds of Delphi Process. The extraction of the content
of the knowledge base was not automated in the presented work,
although the design of an automatic process is an interesting per-
spective.

It would be interesting to test a qualitative model, such as con-
ditional preferences [44], in addition to the quantitative preference
model proposed in this paper. We would like to check whether it
would allow the detection of additional inconsistencies.

Another perspective is the design of a tool based on our prefer-
ence model and the knowledge base, for supporting experts dur-
ing the writing of CPGs. The tool could help experts to detect
inconsistencies in their recommendations before CPGs publica-
tions, but could also suggest a list of recommended antibiotics
for each clinical situation. This could speed up the development
process of CPGs, which is currently too long [5].

Furthermore, these findings might be used for designing a clin-
ical decision-support system for helping physicians to prescribe
antibiotics [77]. Indeed, the preference model could be used for
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suggesting antibiotics when no recommendation exists in CPGs.
Further works are needed to confirm this hypothesis.
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