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Abstract

The aim of eXplainable Artificial Intelligence (XAI) is to design intelligent systems that can explain their predictions or recommen-
dations to humans. Such systems are particularly desirable for therapeutic decision support, because physicians need to understand
recommendations to have confidence in their application and to adapt them if required, e.g. in case of patient contraindication. We
propose here an explainable and visual approach for decision support in antibiotic treatment, based on an ontology. There were three
steps to our method. We first generated a tabular dataset from the ontology, containing features defined on various domains and
n-ary features. A preference model was then learned from patient profiles, antibiotic features and expert recommendations found in
clinical practice guidelines. This model made the implicit rationale of the expert explicit, including the way in which missing data
was treated. We then visualized the preference model and its application to all antibiotics available on the market for a given clinical
situation, using rainbow boxes, a recently developed technique for set visualization. The resulting preference model had an error rate
of 3.5% on the learning data, and 5.2% on test data (10-fold validation). These findings suggest that our system can help physicians
to prescribe antibiotics correctly, even for clinical situations not present in the guidelines (e.g. due to allergies or contraindications
for the recommended treatment).

Keywords: Clinical decision support system, Explainable Artificial Intelligence, Preference learning, Preference visualization,
Ontologies, Antibiotics

1. Introduction

Explainable Artificial Intelligence (XAI) [1, 2, 3] is a research
field aiming to design intelligent systems capable of explain-
ing their predictions or recommendations to humans. Various
approaches have been proposed: (1) interpretable models make
use of non-black box systems, such as a rule base or a formal on-
tology, (2) prediction interpretation and justification models pro-
duce explanations from a black-box algorithm [4], (3) hybrid ap-
proaches combine both types of model. Many XAI approaches
are visual, either because the underlying Artificial Intelligence
(AI) system focuses on image analysis and computer vision, or
because they use visualization to convey large amounts of infor-
mation in a small amount of space.

XAI has been studied in many applications including rec-
ommendation systems [5, 6], classification [7] and in the mil-
itary domain [8, 9, 10], but it is also of considerable interest in
medicine, for explaining the predictions or recommendations of
clinical decision support systems (CDSS) [11]. For diagnostic
systems and medical image analysis, explanations are relatively
easy to obtain: an image annotated with the contours of the de-
tected anomalies can provide sufficient explanation. By con-
trast, for therapeutic systems, XAI is more difficult to achieve,
due to the non-visual nature of patient data and the drug treat-
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ment. Some systems propose excerpts of clinical practice guide-
lines (CPGs) as an explanation [12]. However, the rationale un-
derlying these recommendations is not always explicit in CPGs.
The presence of detailed explanations can increase the trust and
confidence of physicians in CDSS [13].

Many AI approaches can be used for therapeutic decision sup-
port, but they are not equally effective at providing explanations,
particularly for situations in which patient and treatment data
must be combined. One commonly used approach is classifi-
cation (Figure 1, top), which can be achieved through a formal
ontology and a reasoner, or by machine learning on a prescrip-
tion database. Classification approaches use patient data to clas-
sify a patient into one of several categories for treatment. This
approach may, therefore, provide explanations based on these
patient data. For example, it may explain that treatment A is
recommended because patient P is a child. However, as classi-
fication is based exclusively on patient data, such systems can-
not take treatment features into account in the explanations gen-
erated. In theory, the classification approach could be applied
jointly to patient data and treatment features (Figure 1, middle).
However, in this context, classification approaches consider one
patient and one treatment independently of each other, even if
the treatments had been pre-sorted in rank groups (e.g., first-
line, second-line), whereas there is a need to compare treatments
with each other based on patient information and treatment char-
acteristics. For example, a “bad” treatment with many adverse
effects may still be recommended if no better treatment exists.

Another approach is based on preference models. These mod-
els can be used to infer preference relationships for the ordering
of treatments. For any two treatments, A and B, the model can
be used to determine whether A � B (i.e. A is preferred over B),
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Figure 1: Two approaches for therapeutic decision support: classification on pa-
tient data (top) and on patient and treatment data (middle) vs preference models
(bottom).

B � A or A ≈ B (i.e. no preference between A and B). Pref-
erence models can use both patient data and treatment features
as input, considering all the possible treatments for each patient
(Figure 1, bottom). It can thus provide explanations that take
treatment features into account. For example, treatment A may
be recommended because patient P is a child and A has a nice
taste (as children are known to refuse drugs that taste bad). This
allows for more detailed explanations and thus a better under-
standing of the medical reasoning.

Moreover, preference models are also useful in situations in
which the recommended option cannot be chosen (e.g. due to
contraindications, allergies or patient refusal). The classification
approach leaves a clinician with no useful advice if none of the
treatment classes can be given for one reason or another. By
contrast, the preference approach ranks all possible treatments.
If the highest ranked treatment cannot be chosen, the second
best can be considered, and so on.

Preference models can be elicited from experts, but their de-
velopment is a difficult and time-consuming task. Another pos-
sibility is preference learning, in which a preference model is
learned automatically from observed preference information,
such as prescriptions in a database or expert recommendations
in CPGs. However, the efficiency and quality of the learned
preference model depend on the type of input provided to the
learning system. Many preference learning approaches accord
little importance to the structure of the input data, because these
data often take the form of a simple dataset: instances described
by a set of features (i.e. an “instance × feature” two-dimensional
matrix).

Ontologies have recently been proposed as an appropriate
technical choice for structuring the data used in preference
learning. Ontologies are formal models that can be used to make
knowledge accessible to a machine. In its narrow sense [14], an
ontology contains all concepts and necessary relationships in a
domain. Here, we adopt a broader sense, in which ontologies
are knowledge bases encoded in a formal description-logic lan-
guage like OWL. Such knowledge bases are particularly use-
ful for the representation of highly hierarchical data (e.g. when
the feature values are not defined for single instances but for
classes of instances), a frequent situation in the medical domain.
Ontologies have been shown to enhance the performance of
preference-based recommendation systems [15, 16, 17]. Their
use has also been proposed for the structuring of preference
models [18]. However, it is more difficult to learn preferences

from ontologies, for two reasons: (1) in preference learning, all
features are defined on instances, whereas, in an ontology, fea-
tures may have different domains (for example, some features
may describe patient profiles, e.g. age class, and others may
describe treatments, e.g. risk of adverse effects), and (2) some
features may be n-ary properties, reified in the ontology.

In a recent study [19], we used preference learning to detect
inconsistencies in CPGs for antibiotic treatment. We described
the learning of a simple preference model from an ontology of
antibiotic treatments [20, 21] including CPG recommendations.
This model distinguished between necessary and preference fea-
tures, and associated a weight to each preference feature. It was
sufficient for prediction purposes and for identifying CPG rec-
ommendations not matching predictions. However, it presented
several limitations that made it less suitable for explaining the
prediction to a physician, in an XAI perspective: (1) Learning
was not fully reproducible, i.e. if the preference learning pro-
cess is performed multiple times, different models are learned.
These models had similar prediction performances, but could
be very different, e.g. associating very different weights to the
same feature. (2) The model could be ambiguous for humans
to interpret. For example, it may give very similar weights to
two features, e.g. 0.71 and 0.73, and it may not be clear to
the physician whether these two weights are significantly dif-
ferent (i.e. should the feature with a value of 0.73 be regarded
as more important than the one with a value of 0.71?). More-
over, if these weights are presented visually, e.g. on a bar chart,
this difference may not be clearly visible. (3) Our preference
learning method was limited to bipartite ranking (i.e. consid-
ering only two preference labels, “recommended” and “non-
recommended”), whereas CPGs frequently have several levels
of recommendation (e.g. recommended for first-line treatment,
for second-line treatment, and not recommended). (4) Our on-
tology includes many missing values because of the specific fea-
tures of the medical domain, in which much information may
be missing. In accordance with the precautionary principle,
these missing values were considered to take their worst pos-
sible value, but it would be interesting to explore how experts
writing CPGs actually treat missing values.

Our objective here is to learn and visualize preferences from
a knowledge base of antibiotic treatments. We present an im-
proved and generalized method for learning and visualizing a
preference model from an ontology, with a different objective
from our previous work: clinical decision support and the devel-
opment of recommendations that can be explained to humans.
The method proposed solves the problems described above: (1-
2) it considers additional optimization constraints and goals dur-
ing learning, to facilitate the learning of a more reproducible
and unambiguous model; (3) it supports multipartite ranking;
and (4) it provides an understanding of the impact of missing
values on the recommendations. Moreover, this method makes
use of an ontology as the input for preference learning, and we
describe the way in which it handles the difficulties encountered
in this context, such as the possibility of features being defined
on various domains, and the presence of n-ary features. We
used a simple preference learning method, in which the learn-
ing process is reduced to an optimization problem resolved with
a metaheuristic. Finally, we propose a method for visualizing
the resulting preference model, using a set visualization tech-
nique called rainbow boxes [22]. This visualization can then be
used to support and explain the decision provided.

We apply the proposed method to the design of a visual and
explainable CDSS for empirical antibiotic treatment (i.e. an-
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tibiotic treatment prescribed without identification of the causal
bacterium by microbiological culture). The ontology of antibi-
otic treatments was used as input for learning the implicit pref-
erence models used by medical experts in the writing of CPGs.
The resulting CDSS [23] provides a visual display of the var-
ious antibiotics available on the market and their properties,
weighted according to the preference model learned from the
expert recommendations found in CPGs.

The rest of the paper is organized as follows. Section 2
presents related work on preference learning, set visualization
and optimization. Section 3 describes the proposed method for
generating a dataset for preference learning, starting from an
ontology with features defined on various domains, n-ary fea-
tures and missing values. Section 4 describes our preference
model, and the way in which the learning of this model can be
reduced to an optimization problem. Section 5 describes the vi-
sualization methods we applied to the preference model, and the
additional constraint imposed by the visual approach. Section 6
explains how we solved the optimization problem. Section 7
presents the application of the proposed method to the ontology
of antibiotic treatments. It also describes the resulting visual
CDSS for antibiotic treatment and summarizes the results of the
evaluation. Finally, section 8 discusses the proposed method
and the conclusion is presented in section 9.

2. Related work

2.1. Preference learning
Preference-based recommendation systems [24] recommend

an option on the basis of a preference model. Such systems
can be used on e-commerce websites to help clients to choose a
book, a car, or a holiday destination, for example, but they can
also be used for medical decision support, to help physicians to
choose the most appropriate treatment option, such as the best
drug to prescribe. In the medical domain, recommendation sys-
tems can be used to help the physician to provide personalized
care [25], or to recommend a doctor for a patient [26], for ex-
ample.

In these systems, the preference model can be elicited from
experts, but this is often a difficult and time-consuming process.
An attractive option is the learning of the preference model from
observed preference information, because such data is easier to
observe and collect. Examples of such data include customer
transactions on an e-commerce website or medical expert rec-
ommendations in CPGs. This approach is known as preference
learning [27], and is one of the research problems to have re-
ceived considerable attention recently in disciplines such as AI,
machine learning, data mining, and decision support. The aim
is to learn preferences automatically and to construct a prefer-
ence model from the observed preference information. Once
the preference model has been learned, it can be used to im-
prove our understanding of the domain and to provide decision
support. In particular, the model can be used to explain the rec-
ommendations of the system to a human user.

An example of preference learning from ontology is provided
by the work of Tsai and Wang et al. [28, 29]. They proposed
a learning objects recommendation model based on ontological
approaches for e-learning systems. This model was based on
course descriptions in SCORM (Sharable Content Object refer-
ence Model). The use of this ontology made it possible to infer
course requirements, and to inherit instance feature values from
their classes. By contrast to the work presented here, the authors
did not consider features defined on heterogeneous domains and

n-ary features. However, the use of the higher semantic richness
provided by formal ontologies can be useful for the learning of
preferences in complex domains, as we will show here for an-
tibiotic treatment.

2.2. Set visualization
Set visualization involves the graphical representation of ele-

ments and sets, with each element possibly belonging to several
sets. Many approaches have been proposed for set visualization
[30]. We developed one of these approaches, rainbow boxes, a
few years ago [22]. Rainbow boxes display the elements to be
compared in columns, and the sets in labeled rectangular boxes
that cover all the columns corresponding to the elements in the
set. Larger boxes are placed at the bottom and two boxes can be
side-by-side as long as they do not cover the same columns. A
box can have holes, if the elements in the set are not displayed
in consecutive columns. Finding the optimal column order that
minimizes the number of holes is a combinatorial optimization
problem with factorial complexity. The AFB metaheuristic (see
below) is commonly used to solve this problem in a satisfactory
time, up to about 50 columns in real time and more than 200
otherwise. Finally, we have also proposed a proportional ver-
sion of rainbow boxes [31][32], in which the height of the boxes
can vary, to represent a per-set positive real value.

2.3. Metaheuristics
Several learning and visualization techniques, including rain-

bow boxes, require the resolution of optimization problems.
Nature-inspired metaheuristics [33] are simple, but efficient and
adaptable optimization algorithms. They are commonly used
for both machine learning and visualization.

Here, we will use Artificial Feeding Birds (AFB) [34], a re-
cently developed metaheuristic inspired by the behavior of pi-
geons. It considers a population of artificial birds (e.g. 20 birds).
The position of each bird represents a candidate solution for the
optimization problem. The algorithm performs several cycles.
In each cycle, each bird performs one move, chosen from four:
(1) walk to a random position close to the current one, (2) fly to
a random position, (3) fly to the best position previously found
by the same bird, and (4) fly to the current position of another
random bird. Move #4 is allowed only for large birds, which
represent 25% of the birds. Moves #3 and #4 are independent
from the optimization problem, while moves #1 and #2 depend
on the category of optimization problem. Consequently, AFB
can be applied to any optimization problem defined by a triplet
of functions (cost, f ly,walk), where cost is the cost function to
minimize, f ly is a function that returns a totally random solution
(corresponding to move #2) and walk is a function that returns
a random solution close to another previous solution (move #1).
AFB is currently the best option for optimizing rainbow boxes
above 12 columns [34].

3. Generating a proper dataset from an ontology

Before learning preferences, it is necessary to extract from
the ontology a proper dataset, e.g. an “instance × feature” ma-
trix. This task is not trivial, because the interesting features for
preference learning may not be defined on the same domain, and
because they may be n-ary properties (reified in the ontology).

Let us consider an ontology O that consists of axioms de-
scribing a set of individuals I, a set of classes C and a set of
properties R. A given class of individuals X ≡ {x1 ∈ I, ...} are
the instances for preference learning. In addition, a subset of
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the properties F = {p1 ∈ R, ...} are the features for preference
learning. Feature values can be asserted at various levels:

• On instances, e.g. a given drug in a drug-recommender
system. This can be denoted p(x, v) where x is the instance,
p is the feature and v is the value.

• On classes of instances, e.g. on all drugs of a given ther-
apeutic class. This can be denoted c v ∃p.V where c is a
class of instances (i.e. c v X), p is the feature and V is the
class of values p can take for instances belonging to class
c.

• On non-instance individuals and classes, e.g. patient or pa-
tient categories (such as age classes, sex, etc.). This can be
denoted p(i, v) with i ∈ I\X (for a non-instance individual)
and c′ v ∃p.V with c′ @ X (for a non-instance class).

Features can thus have any domain (not necessarily instances).
Finally, we consider a set of preference formulas P observed
between the instances, each formula defining a partial order on
X of the general form x1 ≈ x2 ≈ ... � x3 ≈ x4 ≈ ... � ..., where
a � b means “a is preferred to b” and a ≈ b means “a and b are
indifferent” (i.e. neither a nor b is preferred).

Example #1: A (trivial) ontology describes the drugs indi-
cated for a given disorder. It contains the following classes:
Drug, PatientPro f ile and Prescription. The features are
highCost (domain: Drug, range: Boolean) and isPregnant
(domain: PatientPro f ile, range: Boolean). The non-feature
properties are hasDrug (domain: Prescription, range: Drug)
and hasPatient (domain: Prescription, range: PatientPro f ile).
Preference formulas express the observed preferences of vari-
ous physicians or experts concerning prescriptions, e.g. x1 �

x2 ≈ x3 (i.e. prescription x1 is preferred to x2 and x3; but x2 and
x3 are indifferent with neither preferred over the other), a given
physician considered prescriptions x1, x2 and x3, and finally pre-
scribed x1. The objective is to understand the reasons why one
prescription is preferred over another, and to be in a position
to recommend a prescription to physicians, on the basis of the
two features (cost and pregnancy in this case). Here, individuals
of the Prescription class are instances for preference learning.
However, the two features are not defined in the same domain,
whereas preference learning usually considers an “instance ×
feature” matrix.

The ontology can be used to “project” each feature onto the
instances, to produce such a matrix from a complex ontology
with features having heterogeneous domains. We use class defi-
nitions, rather than query languages such as SPARQL (SPARQL
Protocol and RDF Query Language), because query languages
are often limited when used at the class level and inference, in
particular, may not be possible.

3.1. Features defined on non-instance domain
For each feature p the domain of which is not the instances

(i.e. ∃p.> @ X), we define a property composition q ◦ ... ◦ p
that begins with q (the domain of which is X, the instances),
and ends with p. We create a new property p′ with domain X
and with the same range as p. Then, for each possible value v
in the range of p, we create a class cv equivalent to all instances
indirectly related to v, and we assert a direct relationship using
p′. Formally speaking, cv ≡ X u q ◦ ... ◦ p.{v} and cv v ∃p′.{v}.
In addition, the feature p may be defined at the class level. For
each class Y v ∃p.V (where V is the class of values), we create
a class CV with cV ≡ X u q ◦ ... ◦ p.V and cV v ∃p′.V .

Figure 2: Example of n-ary feature, before (left) and after (right) reification.

Example #1 (continued): We create the hasHighCostDrug
property (domain: Prescription, range: Boolean). We then de-
fine the class of all prescriptions for which the drug has a high
cost, and we assert that all of them have a high cost drug:

HighCostPrescription ≡ Prescription

u ∃hasDrug ◦ highCost.{True}

HighCostPrescription v ∃hasHighCostDrug.{True}

3.2. n-ary features

We consider the reification of each n-ary feature in n bi-
nary properties, p1 to pn. We distinguish one of the related
entities as the range, which is the target of preference learn-
ing, and the n − 1 others are viewed as the domain. We ar-
bitrarily denote the range with index 1. As above, we create
a new property p′, with domain X and with the same range
as p1. For each possible value (v1, ..., vn) of the n-ary feature
(p1, ..., pn), we create a class cv2,...,vn , defined as the intersec-
tion of the instances related to v2,...,vn via properties p2,...,pn,
and we assert a direct relationship using p′. Formally speak-
ing, cv2,...,vn ≡ X u p2.{v2} u ... u pn.{vn} and cv2,...,vn v ∃p′.{v1}.
In addition, for each class Y v ∃p1.V1 u ... u pn.Vn, we cre-
ate a class cV2,...,Vn with cV2,...,Vn ≡ X u p2.V2 u ... u pn.Vn and
cV2,...,Vn v ∃p′.V1.

Example #2: We can extend the previous example with con-
traindications, which clearly affect the physician’s choice. For
the sake of simplicity, we consider only two levels of contraindi-
cation: True (i.e. contraindicated) and False (not contraindi-
cated). Contraindications depend on both the patient profile and
the drug. Contraindication is thus a ternary property between
patient, drug and contraindicated status (Boolean) (Figure 2).
Contraindicated is the range for preference learning, whereas
patient and drug are viewed as domains. For instance, the re-
lation contraindicated(pregnantPatientPro f ile, drugA,True)
means that drugA is contraindicated for pregnant women, with
pregnantPatientPro f ile @− PatientPro f ile. This ternary rela-
tionship can be “projected” onto prescription as follows:

PrescriptionO f DrugAForPregnantPatient

≡ Prescription

u ∃hasDrug.{drugA}

u ∃hasPatientPro f ile.{pregnantPatientPro f ile}

PrescriptionO f DrugAForPregnantPatient

v ∃contraindicated.{True}

When the number of instances of the n-ary property is high,
the creation of these classes is time-consuming and tedious.
However, it can be automated by using a programming language
to “preprocess” the ontology. We used Python scripts with Owl-
ready 2 [35], an Open Source package for ontology-oriented
programming.
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The two difficulties addressed here (heterogeneous domains
and n-ary properties) can be encountered on the same feature
(i.e. an n-ary property having non-instance entities in its do-
main). In this case, the two solutions we propose can be com-
bined.

Finally, using a reasoner such as HermiT [36], we can clas-
sify instances according to the classes defined by intention (cv,
cV , cv2,...,vn and cV2,...,Vn ) thereby obtaining, for each instance, the
associated values of the p′ properties. For a given instance and
feature, if no value is obtained, the value is considered to be
missing (e.g. if the presence of serious adverse effects is un-
known for a given drug). If more than one value is obtained, the
values are considered to be conflicting. In this case, depending
on the feature, it can be decided: (a) to keep the worst value, if
the values are ordered, or (b) to keep all the conflicting values.
The preference learning method described below supports both
missing and conflicting values.

4. Learning preferences from the generated dataset

Preference learning is performed on instances X and features
F ′ = {p′1, ...}, where p′i are the new properties created in the
previous section, defaulting to p′i = pi for binary features having
instances for domain (for which no new property is needed).
For a given feature p′, we use Vp′ to denote the set of possible
values.

4.1. Preference model

Many preference learning methods have been described. The
method described here is designed to learn both:

• Simple necessary constraints N , of the form p′ = v (i.e.
the value of p′ must be v),

• PreferencesW, expressed as weights, with one weight for
each possible value of each feature.

The necessary constraints are mandatory: for instance, only
drugs not contraindicated for the patient should be considered.
On the contrary, preference weights quantify the importance of
the various features and their value (higher values being pre-
ferred over lower values). We therefore formalize our prefer-
ence model asM = (N ,W) where N is a subset of the set of
all possible constraints and W is a tuple of weights, with one
weight for each possible value of each feature1:

N ⊆
{
p′ = v : ∀p′ ∈ F ′,∀v ∈ Vp′

}
W =

(
wp′,v : ∀p′ ∈ F ′,∀v ∈ Vp′

)
Note that, if the constraint p′ = v is present in N , not all

weights wp′,v′ for feature p′ will subsequently be used. However,
we leave these weights in the model to facilitate learning, be-
cause weights and constraints are learned simultaneously. Fea-
tures not involved in the necessary constraints are called prefer-
ence features.

Missing values are associated with a weight of 0 (arbitrary
weight origin). For conflicting values (i.e. features with more
than one value for a given instance, as defined at the end of the
previous section), the sum of the weights of the values is used.

1In the definition, we use set-builder notation, i.e. {x : y} means “the set of
all x such as y is true”.

4.2. Reducing preference learning to an optimization problem

For instances satisfying the necessary constraints, we first de-
fine a utility function u that computes its utility. Instances with
a higher utility are preferred over those with a lower utility, i.e.
if u(a) > u(b) then a � b. Function u computes the sum of the
weights for each value associated with the instance:

u(xi) =
∑(

wp′,v ∈ W such that p′(xi, v)
)

We then define function E (Algorithm 1), which calculates
the error rate obtained when model M is compared with the
set of preference formulas P on instances X. Function E first
produces a total order T on X, using the model: instances satis-
fying the necessary constraints are preferred over those that do
not, and, among the instances satisfying the constraints, those
with a higher utility are preferred. T is then compared with P
to obtain the error rate E. For this comparison, we allowed the
total order T (determined with the preference model) to be more
precise than the observed preference formulas P. Medically
speaking, this means that, whenever two treatments are consid-
ered by experts to be equal, we allow the preference model to
prefer one of them. This makes sense for recommendations, be-
cause, when two therapeutic options are recommended for first-
line treatment, they may not be perfectly identical. By contrast,
we did not allow the preference model to be less precise than
the observed preference formulas. For example, we considered
the total order A � B � C to be compatible with the preference
formulas A � B ≈ C and A ≈ B � C. On the contrary, the total
orders A � B ≈ C and A ≈ B � C were not considered to be
compatible with the preference formula A � B � C, because in
this case, the utility function u fails to predict some preferences.

Preferences can be learned by searching the modelMbest that
minimizes the error rate E. This is an optimization problem:

Mbest = arg min
M

(
E(X,P,M = (N ,W))

)
The resolution of this optimization problem yields the model
with the best performance for prediction. However, this model
may not be the most appropriate for visual explanation: it may
be ambiguous (e.g. should very close weights be considered
equivalent?) or difficult to represent visually. We therefore
added additional constraints during the learning process, as de-
scribed below.

5. Visualization of the preference model

One possible approach for decision support and the provision
of explanations is the visualization of preferences. The visual-
ization of the preference modelM and its application to a set of
instances X′ (which may be X, a subset of X, or new instances
not belonging to X) can be seen as a set visualization problem.
We consider instances as the elements of this visualization prob-
lem, and various sets representing the features of the instances
and their impact on the preference model.

5.1. Reducing preference visualization to set visualization

We define three categories of sets: (1) sets of instances that
do not satisfy a given necessary constraint, (2) sets of instances
that satisfy all necessary constraints and have a given value for
a given preference feature, associated with a strictly negative
weight in the preference model (an argument against choosing
this instance or a disadvantage), and (3) sets of instances that
satisfy all the necessary constraints and have a given value for
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Algorithm 1 Algorithm for the function E returning the error rate of a given model.
function E(X,P,M):

let N andW be the two parts of the modelM = (N ,W)
let XN = {x ∈ X : x satisfies the necessary constraints N}
let X

N
= X \ XN

let e = 0 be the number of errors found
let T be a total order on X, defined as follows:

xi � x j if and only if (xi ∈ XN and x j ∈ XN and u(xi) > u(x j)) or (xi ∈ XN and x j ∈ XN )
xi ≈ x j if and only if (xi ∈ XN and x j ∈ XN and u(xi) = u(x j)) or (xi ∈ XN and x j ∈ XN )

for each instance x ∈ X:
for each preference formula p f ∈ P involving x :

if p f is not compatible with the total order T , then:
e = e + 1
break

return e
|X|

Figure 3: General principles for the visualization of the preference model with
rainbow boxes.

a given preference feature, associated with a strictly positive
weight (an advantage). These sets can be formally defined as
follows:

Bred =
{{

x ∈ X′ : ¬p′(x, v)
}
∀(p′ = v) ∈ N

}
Bora =

{{
x ∈ X′ : x < Bred ∧ p′(x, v)

}
∀p′ ∈ F ′,∀v ∈ Vp′

such that p′ not in N and wp′,v < 0
}

Bgre =
{{

x ∈ X′ : x < Bred ∧ p′(x, v)
}
∀p′ ∈ F ′,∀v ∈ Vp′

such that p′ not in N and wp′,v > 0
}

The resulting sets can be visualized with rainbow boxes. Fig-
ure 3 shows a simple example, using the following preference
model, instances and sets:

N =
{
p′1 = v1

}
W =

(
wp′2,v2 = −2,wp′3,v3 = 3,wp′3,v4 = 2,wp′3,v5 = 0

)
X′ = {a, b, c, d}

Bred =
{
Bp′1,v1 = {d}

}
Bora =

{
Bp′2=v2 = {a, b, c}

}
Bgre =

{
Bp′3=v3 = {a} , Bp′3=v4 = {b}

}
In the rainbow boxes, instances are represented by columns,

and sets by rectangular colored boxes. Each box covers the
columns corresponding to the instances belonging to the set,
and includes a label describing the feature and the associated
value. Sets belonging to Bred, Bora and Bgre are colored in red,
orange and green, respectively. The height of sets in Bred is ar-
bitrary, whereas that inBora andBgre is proportional to the abso-
lute value of the corresponding weight wp′,v. Boxes are stacked
vertically, with the largest ones at the bottom. Two boxes may
be placed next to each other, as long as they have no common

instances. Finally, columns are ordered such that instances be-
longing to the same sets are contiguous, with a combinatorial
optimization algorithm (AFB, see section 2.3). Whenever in-
stances belonging to a given set cannot be placed in contiguous
position, there is a “hole” is present in the box: the box con-
sists of two rectangles, linked by a small stem. In addition, for
ease of reading, all columns for antibiotics that do not satisfy
the necessary constraints are grouped together, on the right.

This visualization can be used for rapid identification of the
best instance: this is the column with no red boxes, the lowest
total height of orange boxes and the greatest total height of green
boxes. As the boxes are stacked, it is easy to determine total box
height by eye. This visual computation corresponds directly to
the utility function u defined above. In addition, the visualiza-
tion explains why a given instance is preferred over another, by
displaying their features and the learned weight for each. Fi-
nally, if the best instance cannot be chosen (e.g. due to a known
patient allergy, in a medical context), the second best, and so on,
can easily be determined. In Figure 3, the best instance is a, and
the overall ranking T is a � b � c � d (as defined in Algorithm
1). Here, a is preferred over b because the value v3 for feature
p′3 has a higher weighting than the value v4.

5.2. Adapting the learning process for visualization

The visualization of the preference model with rainbow boxes
imposes several constraints on the model. First, the boxes must
be tall enough to include a label. The heights of the various
boxes must also be sufficiently different for the difference to be
readily detectable by the human eye. For example, two boxes
with heights of 0.71 and 0.73 may be seen as having the same
height. We therefore considered only integer values for weights,
to prevent ambiguities caused by similar weights, and we for-
bade the values 1 and −1 to prevent boxes from being too small,
thus wp′,v ∈ {...,−4,−3,−2, 0, 2, 3, 4...}.

Second, the vertical space required by the visualization de-
pends on weights : smaller weights are preferable to limit the
amount of vertical space required. Thus, during the learning
process, we try to minimize the error rate, but also the sum of
the weights, denoted S w. As previously noted, if the necessary
constraint p′ = v is present in N , none of the weights wp′,v′

have an impact (and are not displayed on rainbow boxes). We
therefore excluded these weights when computing the sum, as
follows:

S w =
∑

p′

∑
v

(
wp′,v such that @v′ with (p′ = v′) ∈ N

)
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Algorithm 2 Algorithm for the f ly and walk functions for op-
timization problems involving a mixture of combinatorial and
global non-linear optimization.
function f ly():

let N be a random subset of the possible constraints
let W =

(
wp′,v = random integer value between −1 and 9

: ∀p′ ∈ F ′,∀v ∈ Vp′
)

returnM = (N ,W)

function walk(M):
letM′ = (N ′,W′) be a copy ofM
let r be a random real number between 0 and 1
if r < 0.15:

add a random constraint in N ′

else if r < 0.3:
remove a random constraint in N ′

else:
modify a random weight inW′ by +1 or -1

returnM′

Beyond visualization, minimizing the sum of the weights has
several advantages for rendering the preference model more
understandable. First, by multiplying all weights by a given
constant, it is possible to obtain a different, but equivalent,
model. Minimizing the sum of the weights prevents this prob-
lem, thereby making the learning process more reproducible.
Furthermore, we do not count weights associated with features
involved in necessary constraints, and this favors models with
a larger number of necessary constraints. This is desirable, be-
cause necessary constraints are usually easier to understand than
preferences. For example, it is easier for a clinician to apply the
recommendation “do not prescribe drugs with serious adverse
effects”, rather than “prefer drugs without serious adverse ef-
fects, but consider the tradeoffs with other properties such as
efficacy”.

We therefore search for the modelMbest minimizing both the
error rate E and the weight sum S w, in lexicographic order (i.e.
we minimize the error rate and, in cases of equality between
two models, we prefer the model with the lowest weights). The
optimization problem is now:

Mbest = arg min
M

(
E(X,P,M), S w

)

6. Solving the optimization problem

This optimization problem is complex, because it involves a
mixture of combinatorial optimization (for optimizing N) and
global non-linear optimization (for optimizing W). However,
N and W need to be optimized simultaneously, because they
are interdependent.

We solved this problem with Artificial Feeding Birds (AFB,
see section 2.3). We chose this algorithm because of its generic
nature and its ability to solve problems involving a mixture of
combinatorial and global non-linear optimization. It can solve
any optimization problem defined by a triplet of three functions
(cost, f ly,walk). Algorithm 2 shows the f ly and walk functions
we defined for optimizing the preference model M. We used
the default parameter values for the AFB metaheuristics, as de-
scribed in [34].

Figure 4: General structure of the antibiotic treatment ontology. Ternary and
quaternary properties (all but the three on the left) are reified in the ontology.

7. Application to the design of a visual CDSS based on an
ontology of antibiotic treatments

7.1. Context
National health authorities publish CPGs to help physicians

to prescribe the correct antibiotic. In these CPGs, experts rec-
ommend prescribing particular antibiotics on the basis of drug
properties, the infectious disease and the patient’s condition.
For example, they recommend fosfomycin trometamol for un-
complicated cystitis in women, because of its particular proper-
ties, such as its activity against E. coli. However, the preference
model used by the experts for recommending antibiotics is not
explicit in CPGs, and this can lead to a misunderstanding of
the recommendations by GPs, resulting in the poor adoption of
recommendations. In this study, we aimed to explain the im-
plicit preference model used by the experts for recommending
antibiotics and to use this model for clinical decision support in
primary care.

In previous studies [20, 21, 19, 37], we built a knowledge base
describing antibiotics in terms of 11 features used by experts to
establish recommendations (Table 1). Each feature is Boolean,
and its value depends on the antibiotic, the patient profile (e.g.
child or pregnant woman), the infectious disease (e.g. cystitis)
and/or the likely causal bacteria (e.g. Escherichia coli). The
True value corresponds to an advantageous property, the False
value to a disadvantageous property, and unknown values are
considered as missing values. The knowledge base was built and
populated by a medical doctor (RT) using data from multiple
CPGs, and was then validated by a panel of experts in antibiotics
through a Delphi Process.

This knowledge base was formalized as an OWL 2.0 ontology
[19]. It contains 144,038 RDF triples describing 5,696 classes,
19 properties and 34,483 axioms, and it belongs to theALC(D)
family2 of description logics (DL). Figure 4 shows the general
structure of the ontology. It has five main classes: Antibiotic,
PatientPro f ile associated with an infectious Pathology caused
by likely Bacteria. A Prescription is the association of an
Antibiotic with a given PatientPro f ile. The 11 features are de-
fined on five different domains (none of which is Prescription),
and include three binary properties, 7 ternary properties and 1
quaternary property. Most feature values are not specified at

2AL: attribute language (including atomic negation, concept intersection,
universal restriction, existential qualification limited to class Thing), C: complex
negation, (D): use of datatypes [38].
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# Feature [short name]
Definition

1 Naturally active against the causal bacterium [naturally active]
Whether the causal bacterium is described as sensitive or of intermediate sensitivity to the antibiotic (e.g. amoxicillin is
naturally active against group A streptococci)

2 Probably active against the causal bacterium [probably active]
Whether the frequency of resistance in the causal bacterium is considered low for the antibiotic (e.g. ceftriaxone is probably
active against E.coli)

3 Proven clinical efficacy against the disease [proved]
Whether the antibiotic is described as clinically effective for treating the infection OR is (or has been) indicated/recommended
for treatment of the infection (e.g. penicillin G has proven clinical efficacy against pharyngitis)

4 Absence of contraindications for the patient [not contraindicated]
Whether there is no absolute contraindication of the antibiotic for the patient profile (e.g. Ppristinamycin is not contraindicated
for children over the age of six years)

5 Convenient protocol [protocol]
Whether the antibiotic is prescribed for oral administration AND for a short duration (e.g. fosfomycin trometamol has a
convenient protocol in uncomplicated cystitis)

6 Non-precious class [not precious]
Whether the antibiotic does not belong to a class of drugs that must be preserved for more serious infections (e.g. amoxicillin
is a non-precious class in sinusitis)

7 Absence of serious and frequent side effects [no side e f ]
Whether there is no serious side effects mentioned AND the frequency of side effects is sufficiently low for antibiotic pre-
scription to be allowed (e.g. fosfomycin trometamol gives no serious side effects, and the side effects reported are rare)

8 High level of efficacy [e f f icacy level]
Whether the antibiotic is described as very effective (high clinical cure rate, e.g. levofloxacin is very effective in prostatitis)

9 Narrow antibacterial spectrum [spect]
Whether the antibiotic is described as having a “narrow” antibacterial spectrum (e.g. nitrofurantoin has a narrow activity
spectrum)

10 Low level of ecological adverse effects [low eco risk]
Whether the antibiotic is described as having a low risk of promoting bacterial resistance (e.g. Ppivmecillinam has a low level
of ecological risk)

11 Taste [taste]
Whether the antibiotic has an acceptable taste for the patient (e.g. Ccefuroxime axetil has a bad taste and thus is not acceptable
for children)

Table 1: The 11 features in the knowledge base.

the individual level but at the class level, due to the inheritance
relationships for both antibiotic families and patient profiles.
For example, all fluoroquinolones are contraindicated in chil-
dren. Ofloxacin is a fluoroquinolone, and it therefore inherits
this contraindication. This important use of inheritance was our
main motivation for using an ontology. Many missing values are
present, due to the large amount of unknown knowledge in the
medical field. In addition, for each Prescription recommended
in CPGs, the rank of recommendations is presented (1 to 4, with
lower values for rank preferred). This ontology is not publicly
available, but can be made available on request.

7.2. Application of the proposed method

We applied the proposed method to this ontology. Prescrip-
tions are the instances for the purpose of preference learning.
Ranks of recommendations were translated into a set of prefer-
ence formulas P; for example, if a CPG recommends prescrip-
tion A in rank 1 and prescriptions B and C in rank 2 for a given
PatientPro f ile, this was translated as A � B ≈ C � D ≈ E ≈ ...
(where D, E, ... are all the other possible prescriptions).

All features in the ontology correspond to potential advan-
tages of antibiotics (e.g. low frequency of adverse effect, high
efficacy). We therefore restricted the weights for False values
to negative numbers, and those for True values to positive num-
bers (i.e. wp′,False ≤ 0 and wp′,True ≥ 0). This prevents the
learning of medically absurd models, such as a model in which
the prescription of antibiotics with many adverse effects is pre-
ferred over that of antibiotics with fewer adverse effects. When
conflicting values were encountered (e.g. a Pathology associ-
ated with two likely causal Bacteria, one of which is resistant
to a given Antibiotic whereas the other is not), we retained the
worst value (i.e. False).

7.3. Evaluation of the learning process

We performed a 10-fold cross-validation to evaluate the learn-
ing process. The available data was randomly split in 10 subsets.
One subset was reserved for use as the test set, and the other nine
were used for learning. This process was then repeated with a
different subset as the test set, until all the subsets had been used
as the test set (for a total of 10 iterations). For each of the 10
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naturally active = True

∧ probably active = True

∧ proved = True

∧ not contraindicated = True

# Feature wp′,False wp′,True

5 protocol -7 4
6 not precious -2 2
7 no side e f -5 2
8 e f f icacy level -2 2
9 spect -2 2
10 low eco risk -3 2
11 taste -3 2

Table 2: Necessary constraintsN (top) and preference weightsW learned (bot-
tom; weights are not shown when, due to necessary constraints, they have no
impact).

subsets, we ran AFB for 3,000 iterations and retained the best
model (i.e. Mbest in section 5.2). The mean error rate was 3.5%
on the learning set and 5.2% on the testing set. The low error
rate for the test set suggests that the learned preference model is
sufficiently generic and can be generalized well to situations not
present in the learning data.

7.4. Resulting preference model
We produced the final preference model from the entire

dataset. We ran AFB for 3,000 iterations, we performed 10
runs, and we retained the best model. The best model has an
error rate of 3.5%. The best model was found in five runs, at
iteration 2,378 on average.

The best model is described in table 2. The con-
straints learned show that antibiotic prescriptions must have a
True value for four features (naturally active, probably active,
proved and not contraindicated) to be recommended. This is
clinically relevant, because only microbiologically and clini-
cally effective antibiotics should be prescribed to guarantee that
the patient is cured, and contraindications should be avoided to
guarantee patient safety. Indeed, the features included in the
necessary constraints were considered the most relevant for pre-
scriptions by our medical doctor (RT). The other models identi-
fied were very similar to the best model. In particular, the neces-
sary constraints were the same and the protocol and no side e f
feature were associated with higher weights. These models
were associated with a higher weight sum S w or (more rarely) a
slightly higher error rate.

The preference model shows the importance of each fea-
ture for the choice of antibiotic. The features naturally active,
probably active, proved and not contraindicated are very im-
portant because they are associated with the necessary con-
straints. The feature protocol and no side e f are important too,
but less so, because they are associated with the highest weights
(in absolute values).

In addition, the model provides an understanding of how ex-
perts interpret missing values when writing CPGs. For pref-
erence properties, missing values correspond to a weight of 0.
Consequently, the position of the 0 between the two weights of
a given property gives an idea of how missing values are inter-
preted. For example, the weights for the e f f icacy level feature
are we f f icacy level,False = −2 and we f f icacy level,True = 2. Thus, miss-
ing values are interpreted as exactly “in between” high and low

efficacy. By contrast, for the no side e f feature, the weights are
wno side e f ,False = −5 and wno side e f ,True = 2. This suggests that ex-
perts tend to consider antibiotics with unknown serious/frequent
adverse effects as being more like those with no such effects
than those with adverse effects. This may appear surprising,
because it might seem to violate the principle of precaution.
However, in practice, a drug is usually considered to have no
serious/frequent adverse effect until such effects are discovered
in medical practice. From this standpoint, the expert behavior
identified here makes sense.

7.5. Visual and explainable CDSS

We automatically generated the proposed visualization for all
clinical situations modeled in the ontology, for a total of 66
situations, each corresponding to a given patient profile and a
given infectious disease. We integrated the visualization into a
CDSS, AntibioHelp®. This CDSS displays all the antibiotics
present in the ontology in columns, and their properties in col-
ored boxes. Figure 5 shows an example, for uncomplicated cys-
titis in women. The colored boxes give the properties of each
antibiotic and their importance. Properties are identified with
icons and labels; for small boxes, the entire label can be ob-
tained by hovering the mouse over the box.

In this example, the pathology considered is “uncompli-
cated cystitis”, and the patient profile is “Adult woman (non-
pregnant)”. In empirical antibiotic treatment, the probable ca-
sual bacterium for this pathology is E. coli. The naturally active
feature is a ternary property that depends on the antibiotic
and the bacterium. Therefore, any antibiotic A (such as clar-
ithromycin) that is not naturally active against E. coli, i.e.
ternary property value (A, E.coli,True) does not hold, will be-
long to the red box “Bacterium with natural resistance”. Other
features involved in necessary constraints are treated similarly.

For each preference feature, two boxes (one green and one
orange) are shown. Let us consider the protocol feature (la-
beled “convenient” / “not convenient” in Figure 5). It is a
ternary property that depends on the antibiotic and the pathol-
ogy. Thus, any antibiotic A1 (such as ceftriaxone) that does
not have a convenient protocol for uncomplicated cystitis, i.e.
ternary property value (A1, uncomplicated cystitis, False), is
assigned to the orange box “Not convenient”. Any antibi-
otic A2 (such as fosfomycin trometamol) that has a convenient
protocol for uncomplicated cystitis, i.e. ternary property value
(A2, uncomplicated cystitis,True), is assigned to the green box
“Convenient”. Any antibiotic A3 (such as moxifloxacin) for
which the value is missing, i.e. there is no ternary property value
(A3, uncomplicated cystitis, X), X ∈ {True, False}, is assigned
to neither the green box nor the orange box.

In Figure 5, 12 antibiotics (of the 42 considered) satisfy the
necessary constraints and could therefore be prescribed. At a
glance, we can see that one of them, fosfomycin trometamol, has
the highest total heights of green boxes and lowest total weights
of orange boxes. It is, therefore, the most appropriate antibiotic
in this clinical situation. Furthermore, in the column header, we
can see that this is the antibiotic recommended in rank #1 in
CPGs.

The interface can be used to identify the recommended an-
tibiotic, but it also aims to explain why it is recommended and
preferred over other antibiotics. For example, in Figure 5, the
physician can easily understand that fosfomycin is the most ap-
propriate because it has many advantages in terms of protocol,
side effects, efficacy and ecological risk. In addition, the inter-
face is interactive : it allows the physician to filter out antibi-
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Figure 5: Example of the proposed visual CDSS, showing the 42 antibiotics (columns) and their properties (boxes) when used for the treatment of uncomplicated
cystitis in women. Red boxes correspond to unsatisfied necessary constraints, orange boxes to negative weights (i.e. disadvantages) and green boxes to positive
weights (i.e. advantages). Height of orange and green boxes is proportional to the weight learned (Table 2).

otics on the basis of therapeutic classes, using the checkboxes
at the bottom of the screen. When the patient has allergies (e.g.
allergy to beta-lactams), this makes it possible to filter out the
antibiotics to which the patient is allergic.

7.6. Evaluation of the CDSS

In a recent study [23], we investigated whether displaying the
weighted preference properties could increase the confidence
of General Practitioners (GPs) in CPG recommendations, and
help them to extrapolate recommendations to patients for whom
CPGs provide no explicit recommendations (e.g. because the
recommended antibiotic cannot be prescribed due to allergies
or contraindications). With this goal in mind, we carried out a
two-stage crossover online study. GPs were asked to respond
to clinical cases using CPG recommendations, either alone or
with explanations displayed through the interface. We compared
their responses with a gold standard derived blindly from the re-
sponses of two medical doctors. GP confidence was measured
for each clinical case, on a seven-point percentage-based scale
(2, 10, 25, 50, 75, 90, 98% certainty).

In total, 64 GPs were enrolled in the study. The display of
the weighted preference properties significantly decreased the
error rate (−41%, p value = 6 × 10−13), and significantly in-
creased GP confidence (+8%, p value = 0.02) for situations for
which there were no explicit recommendations. By contrast, no
significant effect was found for situations in which there were
explicit recommendations. GPs found the interface usable (SUS
score = 64). Thus, these results suggest that the proposed CDSS
can improve antibiotic prescription in situations for which there
are no explicit recommendations, through visualization of the
weighted antibiotic properties.

8. Discussion

We describe here a general method for learning preferences
from a formal ontology, and for visualizing the resulting prefer-
ence model with rainbow boxes. We demonstrate the use of the
proposed method on an ontology in antibiotic treatment, and we

present the learned preference model. Having developed this
model, we then used it to design a visual CDSS for antibiotic
prescriptions in primary care.

8.1. Preference learning

Preference learning made it possible to build a preference
model, whereas the direct elicitation of the model from experts
would have been difficult. An expert may recommend drug A
rather than drug B in a given clinical situation, and he or she may
argue his or her decision, but can hardly quantify and weight
each argument precisely. By contrast, it is easier for an expert to
populate a knowledge base describing the qualitative properties
of drugs, such as efficacy, or antibiotic resistance.

Our method is based on an ontology. It can learn prefer-
ences from features that are defined with heterogeneous do-
mains, from features that are reified n-ary properties, and it
takes into account missing values. The use of ontologies in
preference learning has two clear advantages. First, feature val-
ues can be expressed at class level rather than instance level,
which is useful in highly hierarchical domains such as the med-
ical domain. For example, “macrolides are not active against E.
coli” involves a ternary property (naturally active), an antibiotic
class (macrolides, which includes several instances of antibi-
otics) and a bacterium instance (E. coli). Moreover, the various
features hold for heterogeneous domains (see Figure 4): antibi-
otic, (antibiotic, patient) pairs (considering ternary properties),
(antibiotic, pathology) pairs, (antibiotic, bacterium) pairs, and
(antibiotic, pathology, bacterium) triples. Second, it makes it
possible to use all the tools developed for OWL ontologies, in-
cluding the Protege editor and the Owlready ontology-oriented
programming module, which can translate OWL ontologies into
SQL databases, thus having the advantages of both ontologies
and relational databases.

In section 3, the proposed method requires the creation of
many classes for dealing with heterogeneous domains and n-ary
features. We suggested the use of a programming language to
“preprocess” the ontology and create these classes. The main
limitation of this approach is that it takes only asserted facts
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into account, ignoring facts that can be inferred. Another so-
lution would have been the use of rules based on First-Order
Logic. However, such rules have an important limitation: they
work on individuals but not on classes. The “preprocessing” ap-
proach should therefore be chosen when features are asserted
at the class level, whereas First-Order Logic should be chosen
when there is a need to consider inferred facts. The antibiotic
treatment ontology considered here includes many features for
which values are provided at the class level. For example, all
penicillins A are contraindicated for patients allergic to amoxi-
cillin, but “penicillins A” is a class of several antibiotics rather
than a single antibiotic. We therefore chose to use the “prepro-
cessing” approach.

After generating the tabular dataset, we performed preference
learning with an optimization algorithm. However, many other
preference learning techniques, such as Choquet integral [39],
could have been used.

We performed several experiments to evaluate the impact on
preference learning of adding a new feature. In these experi-
ments, we ran the learning process after removing one feature.
When the spect feature, associated with low weights, was re-
moved, the error rate increased to 3.9% and the weights of the
other features were modified, but the changes were limited: no
weights were modified by more than +1/-1, and the protocol
and no side e f features were still associated with the highest
weights. Removal of the protocol feature, which is associ-
ated with high weights, led to the error rate increasing to 3.8%
and larger changes in the weights of the other features. The
e f f icacy level feature had the highest weights, potentially re-
flecting possible redundancy between these two features: more
effective antibiotics may require a shorter treatment period and,
therefore, a simpler protocol. The impact of adding a new fea-
ture therefore depends on the importance of the feature added.
However, as our knowledge base was based on CPGs and vali-
dated by several medical doctors, including the referent doctor
for infectious diseases at our hospital, we are confident that it
contains the most important features for prescribing antibiotics.

The proposed preference model had an error rate of 3.5%
(115 errors in 3,300 prescriptions). In our previous study [19],
we used preference learning to identify candidate inconsisten-
cies in CPGs. Our previous preference model had slightly
higher error rates (3.8% for first-line treatment and 4.0% for
any line), and about half these errors were manually classified as
being due to inconsistencies in CPGs. Here, 51 of the 55 errors
previously considered to be due to inconsistencies in CPGs were
still present. Consequently, at least 51/115 = 44% of errors are
related to inconsistencies in CPGs. The others errors may be
related to limitations of the preference model or the knowledge
base.

8.2. Visualization

We used rainbow boxes to visualize preferences. Preference
learning is a well-established topic in computer science, but very
few studies have focused on the visualization of a preference
model. D Bogdanov et al. [40] visualized a preference model
in music, using set visualization: Euler diagrams drawn on top
of a two-dimensional semantic projection. In a previous work
[41], one of the authors (JBL) used rainbow boxes for XAI, but
following a totally different approach, using case-based reason-
ing rather than preference learning. This suggests that set visu-
alization, and rainbow boxes in particular, can be of particular
interest for XAI. This is not particularly surprising, given the
frequent use of set theory in AI.

One of the perspectives opened up by this work is a compari-
son of the proposed visual tool with other possible presentation
of the explanations, such as a simpler textual list of advantages
and disadvantages, or more complex visual datamining tools
such as the one proposed by H Ltifi et al. [42] for monitoring
nosocomial infections.

8.3. Optimization method

We used the AFB metaheuristic, because of its generic na-
ture and its suitability for use in global non-linear optimization
and combinatorial optimization. One of the drawbacks of AFB
is that, due to its metaheuristic nature, it is partly random and
cannot therefore be entirely reproducible (unless a fixed ran-
dom seed is used). This can be problematic for the generation
of explanations. However, for complex optimization problems,
metaheuristics are often the only option available. In particular,
as stressed above, the learning of the preference model requires
a mixture of global non-linear optimization and combinatorial
optimization, and the optimization of rainbow boxes has a fac-
torial complexity and, with 42 columns, the solution space is
huge. Moreover, the addition of constraints to the learning pro-
cess (as detailed in section 5.2) made the learning almost repro-
ducible. Finally, in Algorithm 2, we used arbitrary threshold
values for r (0.15 and 0.3) and the default values for the other
AFB parameters. Optimal values could be sought, e.g. using an-
other (or the same) metaheuristic. However, the entire learning
process takes less than three minutes on a state-of-the-art laptop
computer, and we did not, therefore, feel the need to spend time
optimizing these parameters.

8.4. Ontologies in antibiotic treatment

We chose to create our ontology from scratch , because
we found no resources entirely suitable for our purposes: the
existing resources (DrugBank3, RxNorm4, [43, 44]) describe
marketed products (e.g. Clamoxyl®) rather than substances
(e.g. amoxicillin), they do not contain all the features required
for our system (e.g. ecological risk), and they do not cat-
egorize each feature as an advantage or a disadvantage with
regard to prescription. Our literature review identified two
ontologies developed for antibiotic prescriptions in hospital.
The first, IDDAP, [43] allows proposing a list of “appropri-
ate” antibiotics according to relationships between infectious
diseases/antibiotics, antibiotics/bacteria, antibiotics/patient and
antibiotics/drugs. However, the medical content of this on-
tology was based partly on non-validated resources (such as
Wikipedia), it was not checked by antibiotic specialists, and
some important features (e.g. narrow spectrum) were missing.
The second ontology [44] was populated from robust sources
(CPG, knowledge of antibiotic specialists) and allows gener-
ating a list of antibiotics based on matches between antibi-
otic/bacteria, antibiotic/patients and antibiotic/diseases. How-
ever, both ontologies produce recommendations different from
those found in CPGs.

We therefore constructed our own knowledge base and ontol-
ogy manually, from medical textual resources and expert knowl-
edge. In the future, we plan to update the ontology automatically
through external resources. For example, we could use microbi-
ological observatories to update microbiological properties (e.g.
for bacteria, natural sensitivities), drug databases for updating

3https://www.drugbank.ca
4https://www.nlm.nih.gov/research/umls/rxnorm
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drug properties (e.g. for contraindications), pharmacovigilance
databases for updating side effects, and Medline databases for
updating properties relating to efficacy (e.g. evidence of clinical
efficacy). The incorporation of regularly updated data should
improve the quality of healthcare and increase the adoption of
this system by physicians [45].

8.5. Comparison with other CDSS for antibiotic prescription

Very few preference-based approaches have been proposed
for medical decision support. In the antibiotic domain [46, 47,
48, 49], other types of reasoning have been proposed: produc-
tion rules (e.g. MYCIN [50], ADVISE [51]), fuzzy logic (e.g.
FCM-uUTI DSS [52, 53], Terap-IA [54]), causal probabilistic
networks (e.g. TREAT [55]), and logistic regression models
(e.g. HELP [56]). However, these types of reasoning may be
difficult for physicians to understand, potentially impeding the
adoption of these systems. Furthermore, the criteria considered
by these systems and the recommendations they produce do not
match those of CPGs.

Our approach aims to overcome these limitations. We made
the reasoning used by clinical experts for recommending an-
tibiotics explicit, through a preference model. This preference
model is displayed in the form of rainbow boxes presenting the
recommended antibiotics, but also the non-recommended an-
tibiotics, with their weighted properties. This (i) helps physi-
cians to deal with situations not described in CPGs (i.e. if the
physician cannot prescribe the recommended antibiotic e.g. be-
cause it has been poorly tolerated by the patient in the past, he
or she can easily select another option from the list displayed
in the interface); (ii) provides explanations for physicians in the
form of weighted antibiotic features: physicians can easily un-
derstand the reason why one antibiotic is preferred over others
(e.g. because it has fewer adverse effects). The provision of
recommendations that can be adjusted to any clinical situation
[57], accompanied by convincing explanations, understandable
by physicians, should improve physicians’ knowledge about an-
tibiotics [58], their critical analysis capacities [58], and their
confidence in the CDSS [59], increasing the chances of its adop-
tion.

Our approach is implemented in AntibioHelp® [23, 60], a
CDSS for antibiotic prescriptions. However, this approach
could also be useful during the process of CPG formulation. In-
deed, the preference model could be presented to experts during
the writing of CPGs to help them to produce better guidelines
and for the automatic detection of possible inconsistencies [19].
Experts could also visualize and compare antibiotics easily, ac-
cording to their features weighted by degree of importance.

9. Conclusion

In conclusion, preference learning is a very promising ap-
proach for analyzing medical reasoning that can also be used for
clinical decision support. In particular, it can combine patient
data and treatment features to generate explanations. We imple-
mented our approach in AntibioHelp®, which provides guide-
line recommendations and justifications, to help physicians to
extrapolate the recommendations to situations for which no ex-
plicit recommendations exist. The feasibility of extrapolating
the proposed method to explainable decision support in other
medical domains, such as the treatment of chronic disorders
(type 2 diabetes, hypertension, etc.) should be investigated.
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