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Early Prediction of All-Cause Clinical Deterioration in General
Wards Patients: Development and Validation of a

Biomarker-Based Machine Learning Model Derived From
Rapid Response Team Activations
Antoine Saab, MEng,*† Cynthia Abi Khalil, MSN,‡ Mouin Jammal, MD,§
Melody Saikali, MSc,† and Jean-Baptiste Lamy, PhD*
Objective: The aim of the study is to evaluate the performance of a
biomarker-based machine learning (ML) model (not including vital signs)
derived from reviewed rapid response team (RRT) activations in predicting
all-cause deterioration in general wards patients.
Design: This is a retrospective single-institution study. All consecutive
adult patients’ cases on noncriticalwards identified by RRT calls occurring
at least 24 hours after patient admission, between April 2018 and June
2020, were included. The cases were reviewed and labeled for clinical de-
terioration by a multidisciplinary expert consensus panel. A supervised
learning approach was adopted based on a set of biomarkers and demo-
graphic data available in the patient’s electronic medical record (EMR).
Setting: The setting is a 250-bed tertiary university hospital with a basic
EMR, with adult (>18 y) patients on general wards.
Patients: The study analyzed the cases of 514 patients for which the RRT
was activated. Rapid response teams were extracted from the hospital tele-
phone log data. Two hundred eighteen clinical deterioration cases were
identified in these patients after expert chart review and complemented
by 146 “nonevent” cases to build the training and validation data set.
Interventions: None
Measurements and Main Results: The best performance was
achieved with the random forests algorithm, with a maximal area under
the receiver operating curve of 0.90 andF1 score of 0.85 obtained at predic-
tion time T0–6h, slightly decreasing but still acceptable (area under the re-
ceiver operating curve, >0.8; F1 score, >0.75) at T0–42h. The system
outperformedmost classical track-and-trigger systems both in terms of pre-
diction performance and prediction horizon.
Conclusions: In hospitals with a basic EMR, a biomarker-based ML
model could be used to predict clinical deterioration in general wards pa-
tients earlier than classical track-and-trigger systems, thus enabling appro-
priate clinical interventions for patient safety and improved outcomes.
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D elays in medical interventions in clinically deteriorating pa-
tients have been found to be associated with increased mor-

bidity and mortality.1–3 Therefore, early and continuous detection
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of gradually worsening patient conditions in hospital wards might
allow for more rapid treatments and thus improved outcomes.4

The most common forms of clinical deterioration are respira-
tory instability, hemodynamic instability, sepsis, bleeding, cardiac
decompensation, and acute hepatic/renal failure.5 Deteriorating
patients often require transfer to a higher level of care (such as in-
tensive care units [ICUs]) and the urgent call for medical and nurs-
ing professionals for assessment and interventions.

Studies have documented that clinical signs and symptoms of pa-
tient deterioration (such as hypotension, bradycardia, tachypnea, tachy-
cardia, altered level of consciousness, etc) can be detected as early as 6
to 8 hours before the deterioration event or cardiorespiratory arrest.6

These findings, derived from the late 1990s, led to the develop-
ment and wide implementation of specific hospitals early warning
systems (EWSs) called “track-and-trigger” systems, which can
help predict clinical deterioration. These systems rely on the peri-
odic observation of selected basic clinical signs (“tracking”) with
predetermined calling or response criteria (“trigger”) for request-
ing the attendance of staff who have specific competencies in
the management of acute illness and/or critical care.7 In practice,
most of these systems are based on the regular measurement of vi-
tal signs,8 that would serve to calculate a paper-based or electronic
severity score with predetermined thresholds triggering a call for a
rapid response team (RRT). This team then evaluates the patient
and takes clinical actions to prevent or manage the deterioration.
“Track-and-trigger” systems are currently still considered as the
criterion standard with regard to detecting and responding to clin-
ical deterioration and have been shown to increase the number of
calls to the RRT, decrease the number of cardiac arrests, and im-
prove the response time of emergency medical teams.9

However, these track-and-trigger systems have practical limita-
tions. First, the time from detection to actual deterioration is rela-
tively short (0–8 hours), which provides a small window of oppor-
tunity for appropriate interventions that could prevent or mitigate
the clinical risks. Second, the deterioration prediction score is sensi-
tive to data quality and availability. Thus, any delays, omissions, or
errors in the measurement of vital signs, which are all human depen-
dent factors, can potentially affect the performance of the deteriora-
tion prediction score. Moreover, automated versions of such track-
and-trigger systems cannot be effectively implemented in hospitals
with basic EMRs (i.e., staged as 0, 1, or 2 according to the Healthcare
Information and Management Systems Society Electronic Medical
Record Adoption Model adoption model classification10), because
they do not include an electronic nursing flowsheet documentation
module. It is to be noted that the proportion of hospitalwith such basic
EMRs is significant worldwide, especially in third-world countries.11

A new and promising approach described in recent studies12–16

involves the addition of physiological biomarkers measurements
to the traditionally measured vital signs and demographic patient
data routinely available in the EMR. Biomarkers are defined as
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biological characteristics (such as, e.g., the C-reactive protein (CRP),
procalcitonin, serum creatinine, etc) that are objectively measured
and used as indicators of certain physiopathological processes.17

This approach is based on the hypothesis that changes in certain bio-
markers can precede the onset of clinical signs and symptoms, some-
times as early as 48 to 72 hours18,19 theoretically permitting an earlier
prediction of deterioration than traditional track-and-trigger systems.

Moreover, most of the prediction models were trained accord-
ing to cases with the following outcome variables: cardiorespira-
tory arrest/death/unexpected transfer to ICU. Only few studies20,21

have adopted the activation of the RRTas an outcome for the train-
ing and validation of the predictive model,22,23 although such an
outcome encompasses a broader and richer perspective of clinical
deteriorations. In fact, a significant percentage (almost half ) of
RRT deterioration cases end with stabilization of patients on
wards,24,25 a clinical scenario otherwise not used bymost systems.

Finally, recent studies have shown that machine learning (ML)–
based EWSs can achieve greater accuracy than aggregate-weighted
EWSs,26 thus their increased use in the derivation of new models.

The aim of this study is to elaborate and validate a biomarker-based
model (without including vital signs data) based on absolute and
differential biomarker values for the prediction of general (all-
cause) clinical deterioration, using ML algorithms as a deriva-
tion method, and expert-reviewed RRT calls as the main out-
come for model training and validation. Our hypothesis is that
such a model could predict all-cause clinical deterioration earlier
than track-and-trigger systems, without the need to use vital signs
and other complex patient data (e.g., diagnosis, clinical notes…),
thus allowing such an approach to be used in healthcare settings,
which have even the most basic EMR systems. Ultimately, this
may provide opportunities to intervene earlier, help allocate re-
sources more effectively, and potentially improve the patients’
health outcomes.

MATERIALS AND METHODS
The hospital institutional review board deemed this study as

“exempt” from further review, because it does not directly in-
volve human subjects.

Study Design and Setting
We conducted a retrospective single-institution cohort study of

all consecutive adult (>18 y) hospitalized patients in noncritical
wards for whom an RRTwas called after 24 hours of their admis-
sion over more than a 2-year period (April 1 2018, through June
30, 2020).

The study took place in a 250-bed tertiary university hospital
in Beirut, Lebanon. The hospital’s EMR can be considered as
basic (stage 1 as per the Healthcare Information andManagement
Systems Society’s Electronic Medical Record Adoption Model).
The system contains admissions/discharge/transfer data, basic an-
cillaries with limited integration (laboratory, radiology, and phar-
macy), billing (procedures and consumables), but no electronic
nursing or medical documentation, nor computerized physician
order entry or clinical decision support applications.

Definitions
We have adopted the following complementary definitions for

the clinically deteriorating patient: “one who moves from one
clinical state to a worse clinical state which increases their indi-
vidual risk of morbidity, including organ dysfunction, protracted
hospital stay, disability, or death,”27 and “a dynamic state expe-
rienced by a patient compromising hemodynamic stability,
marked by physiological decompensation accompanied by sub-
jective or objective findings.”28
© 2022 Wolters Kluwer Health, Inc. All rights reserved.
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Data Collection
A multidisciplinary expert consensus panel (an internal medi-

cine physician, a nurse, 2 patient safety professionals, and a panel
of physicians from specialized disciplines consulted on demand)
analyzed all 514 RRT calls that were extracted from the hospital
telephone log data. Of these 514, the panel selected the 237 cases
where sufficient documentation about the event was found. Six-
teen patients for whom an RRT call was initiated within the first
24 hours were excluded. The remaining data set included 221
cases, for which the panel judged if a clinical deterioration oc-
curred after a full review of the patient’s medical file. The deteri-
oration was also classified by the panel according to preset deteri-
oration categories that are listed in SupplementaryMaterial, http://
links.lww.com/JPS/A501, http://links.lww.com/JPS/A502. Then,
after accounting for 3 false alarm calls, the final data set included
218 deterioration cases.

Second, these cases were complemented by 146 “nonevent” pa-
tient caseswhere no deterioration event had occurred during hospital-
ization, which were randomly chosen from a pool of patients admit-
ted in the same study period, to the samewards and discharged home
after a hospital stay between 3 and 7 days (5 days being the median
length of stay of patients admitted to the included general wards).

This constructed data set was later split into 3 separate parts
that were used respectively for the training, validation, and testing
of the model. We used an oversampling algorithm (SMOTE)29 to
balance the data set distribution, after data set splitting. Figure 1
illustrates the data set selection and inclusion steps.

Explanatory Variables (Model Features)
Forty-four explanatory variables (model features) available in

the EMR that could potentially be early predictors of the patient de-
terioration outcome were identified by the expert panel based on a
literature review5,30-42 of the predictors of most common in-hospital
clinical deterioration situations. These variables included demo-
graphic patient data (e.g., age and sex), laboratory values (absolute
value and difference from the previous value, noted Δ), and use of
specific medical devices or interventions on the patient (such as
bilevel positive airway pressure, mechanical ventilation) but did not
include vital signs. The complete list of variables is listed in the Sup-
plementary Digital Content 1, http://links.lww.com/JPS/A501.

Measurement and Prediction Timing
Several time points for prediction were considered to account

for the model’s time dependency. Time of prediction, Tp, was de-
fined as the time before T0 at which the prediction was generated,
where T0 is the time of the deterioration event.

For each patient, we selected measurements (values of explan-
atory variables) at the following prediction time points Tp: T0–3h,
T0–6h, T0–12h, T0–18h, T0–24h, T0–30h, T0–36h, T0–42h, and
T0–48h. These prediction time points were chosen based on the
frequency of patient clinical reevaluation (every 6–8 hours)
adopted for noncritical wards in clinical practice recommenda-
tions43 and observed in most hospitals. For nondeteriorating pa-
tients, T0 was set as the time of discharge.

For each prediction time point (Tp), the most recent value rela-
tive to Tp of each explanatory variable was measured and docu-
mented, all the way up to 3 days (72 hours) before Tp, in line with
similar studies.12 This interval between Tp and Tp–72h will be
called the explanatory variables collection (or sampling) window.
In fact, this window was chosen to be wide enough to take into
consideration the values of different laboratory examinations that
are not necessarily ordered by the medical team in the same day
nor repeated with the same frequency as per clinical guidelines.44

At the same time, that samewindow should be sufficiently limited
www.journalpatientsafety.com 579
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FIGURE 1. Flowchart of cases recruitment and data set construction.

Saab et al J Patient Saf • Volume 18, Number 6, September 2022
in time (3 days) not to exceed the maximal predictive horizon of
physiological biomarkers in the literature18,19 relative to clinical
deterioration (72 hours), hence close enough to the prediction time
point so that the contained values of the requested exams can still
be associated with the physiological and clinical status of the pa-
tient at the time of prediction.

Differential (δ) variables (e.g., ΔC-reactive protein) were de-
fined as the difference between the available value of the variable
closest to Tp in time and the available value of the variable furthest
from Tp in time, all within the explanatory variables collection
window.

Missing values among any explanatory variable in the window
were imputed by using the mean value of the same variable over
the entire cohort in the same time window. An illustration of the
prediction timeline and its associated concepts can be found in
Figure 2.

Model Training, Validation, and Testing/Algorithms
The Python programming language was used for developing

the scripts to create and analyze the models. A supervised learning
approach was adopted using different ML algorithms: random
FIGURE 2. Timeline for prediction.
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forests (RF), gradient boosting, artificial neural networks (ANN),
and logistic regression (LR). We used the implementation from
the Sklearn Python module for RF and LR, XGBoost for Gradient
Boosting, and Keras for ANN.

Fifty percent of the data set was used as a training set, and the
rest of the data set was equally split to be used for validation and
testing using a 5-fold cross-validation.

Outcomes and Evaluation Metrics
The area under the receiver operating curve (AUROC) and the

F1 score (defined as the harmonic mean of the precision and recall
of the model outcome) were used for reporting the performance
results of the different algorithms for each class of deterioration,
calculated on the basis of a “one-versus-rest” approach.

To identify the important predictors of the model, variable im-
portance was determined by calculating the relative influence of
each explanatory variable on the algorithm classification results
using the Python Sklearn library (Python Software Foundation,
Python Language Reference, version 3.7).

The model parameters were fine tuned for the different algo-
rithms using only the training and validation data sets (not the
© 2022 Wolters Kluwer Health, Inc. All rights reserved.
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TABLE 1. Distribution of the Clinical Outcomes of the Deterioration Cases Included in the Model

No. Cases Per Outcome Type

Deterioration Type (Typical Examples)
Stabilized
on Floor

Transfer
to ICU Code Blue

Not for
Resuscitation Total Cases Percentage

Cardiological (atrial fibrillation, tachyarrythmia,
supraventricular tachycardia, cardiac infarct)

38 8 46 21.1%

Pneumonia (pneumonia, aspiration pneumonia,
pneumonitis, bronchiolitis)

32 21 52 23.9%

Pulmonary edema/fluid overload (heart failure
decompensation, fluid overload)

16 4 1 21 9.6%

Sepsis (sepsis/severe sepsis/septic shock) 25 31 3 2 62 28.4%
Hepatic/pancreatic failure (hepatic encephalopathy) 5 4 9 4.1%
Hypovolemia/hypovolemic shock (hemorrhage) 3 6 9 4.1%
Other (hospital induced/acquired conditions including
hypoglycemia, medication errors/adverse effects, etc)

9 8 1 16 7.3%

Grand total 128 82 4 3 218 100.0%

J Patient Saf • Volume 18, Number 6, September 2022 Prediction of All-Cause Clinical Deterioration
testing data set) and using specific tools in the Python Sklearn
model selection library, such as GridSearchCV.

RESULTS

Descriptive Statistics
Patient deterioration events in the study occurred in the follow-

ing hospital departments: internal medicine (48%), infectious dis-
eases (22%), and medicosurgical (30%).
TABLE 2. Algorithms Performance Versus Prediction Time

Algorithm/No.
Test Cases Model Parameters Metrics

RF classifier
(n = 108)

(n_estimators = 600, criterion =
“entropy,” max_depth =
12, min_samples_leaf =
2,min_samples_split = 4)

Precision (deterioratio
no deterioration)

Recall (deterioration/
no deterioration)

F1 score
AUROC score

Boosting classifier
(XGBoost,
n = 108)

(max_depth = 12, learning_
rate = 0.01, gamma =
0, min_child_weight =
1, n_estimators = 600)

Precision (deterioratio
no deterioration)

Recall (deterioration/
no deterioration)

F1 score (deterioration
no deterioration)

AUROC score
ANN (n = 108) (architecture 20/8/1,

loss = “binary_crossentropy,”
optimizer = “Adam,”
metrics = [“accuracy”], BS =
43, EPOCH = 4000)

Precision (deterioratio
no deterioration)

Recall (deterioration/
no deterioration)

F1 score (deterioration
no deterioration)

AUROC score
LR (n = 108) (penalty = “l2,” dual = False, tol =

0.0001, C = 1, fit_intercept =
False, intercept_scaling =
1, class_weight = “balanced,”
random_state = None, solver =
“lbfgs,” max_iter = 30000,
warm_start = False, n_jobs =
None, l1_ratio = None)

Precision (deterioratio
no deterioration)

Recall (deterioration/
no deterioration)

F1 score (deterioration
no deterioration)

AUROC score

© 2022 Wolters Kluwer Health, Inc. All rights reserved.
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The deterioration case distribution by diagnosis and clinical
outcome distribution (stabilization on floor, transfer to ICU, code
blue, not for resuscitation) of the different deterioration cases by
class are shown in Table 1.

Model Performance
Performance of the various algorithms was calculated and

depicted in Table 2. The best performance was achieved with the
RF algorithm, with a maximal AUROC of 0.90 and F1 score of
T0–
3h

T0–
6h

T0–
12h

T0–
18h

T0–
24h

T0–
30h

T0–
36h

T0–
42h

T0–
48h

n/ 0.81/
0.80

0.85/
0.85

0.81/
0.80

0.85/
0.79

0.8/
0.77

0.76/
0.77

0.74/
0.78

0.8/
0.75

0.71/
0.74

0.79/
0.80

0.85/
0.85

0.79/
0.80

0.77/
0.87

0.75/
0.81

0.77/
0.75

0.79/
0.72

0.74/
0.81

0.75/
0.70

0.81 0.85 0.81 0.82 0.78 0.76 0.75 0.77 0.73
0.87 0.9 0.88 0.87 0.88 0.87 0.83 0.82 0.78

n/ 0.75/
0.76

0.84/
0.79

0.67/
0.69

0.74/
0.69

0.76/
0.70

0.65/
0.62

0.76/
0.70

0.65/
0.65

0.63/
0.62

0.77/
0.74

0.77/
0.85

0.72/
0.64

0.66/
0.77

0.66/
0.79

0.58/
0.68

0.66/
0.79

0.64/
0.66

0.60/
0.64

/ 0.75 0.81 0.68 0.72 0.73 0.63 0.73 0.65 0.62

0.85 0.86 0.81 0.83 0.85 0.76 0.79 0.73 0.72
n/ 0.74/

0.74
0.75/
0.71

0.71/
0.66

0.76/
0.73

0.75/
0.61

0.79/
0.70

0.62/
0.69

0.71/
0.74

0.69/
0.69

0.74/
0.74

0.68/
0.77

0.60/
0.75

0.72/
0.77

0.45/
0.85

0.64/
0.83

0.75/
0.55

0.75/
0.70

0.68/
0.70

/ 0.74 0.73 0.68 0.75 0.65 0.74 0.65 0.73 0.69

0.78 0.78 0.82 0.79 0.76 0.8 0.72 0.78 0.75
n/ 0.85/

0.70
0.90/
0.71

0.70/
0.86

0.86/
0.79

0.88/
0.74

0.87/
0.77

0.78/
0.76

0.80/
0.74

0.74/
0.71

0.62/
0.89

0.62/
0.93

0.70/
0.86

0.77/
0.88

0.68/
0.91

0.73/
0.89

0.75/
0.79

0.71/
0.82

0.70/
0.75

/ 0.76 0.78 0.78 0.82 0.79 0.81 0.77 0.77 0.72

0.81 0.85 0.82 0.87 0.86 0.88 0.83 0.81 0.8
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0.85 obtained at prediction time T0–6h. This slightly decreases but
is still acceptable at T0–42h, with an AUROC of 0.82 and an F1
score of 0.77.
Explanatory Variables’ Importance
Explanatory variables’ importance for the RFmodelwas calcu-

lated and represented in Figure 3, using a “heatmap” representa-
tion warm-to-cool color scheme, with the warm colors representing
high-value impact of the variable and the cool colors representing a
low-value impact.

The most contributing variables to the prediction result (in de-
creasing order) were the following: CRP, lymphocytes count, sodium
minus chloride, sodium differential, alkaline reserve differential,
age, blood urea nitrogen differential, potassium differential, and
neutrophil-to-lymphocyte ratio. In addition, we illustrated in Sup-
plemental Material 2, http://links.lww.com/JPS/A502, one example
(among others) of a logical visualization of the decision-making
process of the model using the decision tree algorithm at T0–12h,
showing the previously mentioned variables and the model cho-
sen thresholds.
Benchmark Against Other All-Cause
Deterioration Models

Benchmarks to track-and-trigger (vital signs based) deteriora-
tion prediction models and to other more hybrid deterioration pre-
diction models (vital signs, laboratory values, patient demograph-
ics, diagnosis, etc) from the literature are given in Table 3, both in
terms of performance metrics, outcome variables, and best time
to prediction.

The prediction model showed an earlier prediction horizon
(up to 42 hours) with acceptable performance (AUROC, >0.8),
FIGURE 3. Features importance by deterioration class (RF classifier), pred
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relative tomost track-and-trigger systems (6–24 hours), but alsomost
hybrid all-cause deterioration prediction systems (12–48 hours).

The F1 score (and specifically the positive predictive value) of
the model is good (>0.8) and scored better than most track-and-
trigger models, which could mean in practice a lower rate of false
alarms generated.
DISCUSSION
In this retrospective, single-center study, we developed and

evaluated an ML model for the prediction of all-cause patient
deterioration. The model’s explanatory variables were mainly bio-
markers values routinely available in basic EMRs, without inclu-
sion of vital signs data.
1)Potential use of the model for predicting clinical deterioration
and supporting clinical decision making
If transformed into an automated clinical decision support tool

and applied systematically to all hospital inpatients, this model
could potentially stratify patients based on their deterioration risk
score and proactively alert the healthcare team of patients possibly
at high risk of deterioration within the next hours per days. The
update or refreshing of the model data prediction result would ba-
sically rely on the arrival of new laboratory data, thus on the fre-
quency of blood sample extraction, which in practice can range
from 12 to 48 hours for most in-hospital patients.

This prediction is based on the capture of a rich “physiological pic-
ture” (mainly through biomarkers), which precedes chronologically
the “clinical picture” (captured by track-and-trigger models, through
observation of vital signs and clinical exam), hence an earlier predic-
tion of deterioration.

This earlier prediction (up to 42 versus 6–12 hours for track-
and-trigger models) can give the healthcare team a window of
opportunity to try to stabilize or manage at-risk patients on
iction at T0–6h.

© 2022 Wolters Kluwer Health, Inc. All rights reserved.
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TABLE 3. Benchmark Relative to a Number of Recent Studies and Reviews With Similar Scope

Model
Category

Study/Model
Name Study Phase Study Type

Statistical
Methods
Used for
Model

Derivation
Prediction

Performance
Types of

Variables Used
Outcome
Measure

Prediction
Horizon
(Window)

Track-and-trigger
models (vital
signs based)

Campbell et al45

(2020)/
Q-ADDS

Prediction model
performance
benchmark

Retrospective
single-center
cohort

Clinical
consensus
based

0.71 (AUC) Vital signs Death/unanticipated
admission to
intensive care

30 h

Kia et al46

(2020)/
MEWS++

Prediction model
validation

Retrospective
single-center
cohort

ML algorithms 0.85 (AUROC) Vital signs Death/unanticipated
admission to
intensive care

6 h

Kirkland
et al20

(2013)

Prediction model
validation

Retrospective
single-center
cohort

Multivariate
regression
analysis

0.71 (AUROC) Vital signs,
Braden score,
fall risk score

RRT activation 2–12 h

Cho et al47

(2020)
Automated

system
performance
benchmark

Retrospective
single-center
cohort

ML algorithms 0.86 (AUC) Vital signs Cardiac arrest/
unanticipated
admission to
intensive care

0.5–24 h

Gerry et al23

(2020)
Systematic

review
AI and non-AI

algorithms
0.55 to 0.96

(C-index)
Vital signs Death/unanticipated

admission to
intensive care

24 h/
inpatient
stay

Fu et al48

(2020)
Systematic

review
AI and non-AI

algorithms
0.71–0.96

(AUC)
Vital signs Death/unanticipated

admission to
intensive care

24 h/
inpatient
stay

Peelen et al21

(2020)
Systematic

review
AI and non-AI

algorithms
0.65–0.93

(AUC)
Vital signs RRT activation,

cardiopulmonary
resuscitation,
unanticipated
transfer to an
ICU, or death

2–24 h

Muralitharan
et al26

(2021)

Systematic
review

ML algorithms 0.57 to 0.97
(AUC)

Vital signs Cardiac arrest/death/
unanticipated
admission to
intensive care

4–24 h

Hybrid
deterioration
prediction
models (vital
signs,
biomarkers,
and patient
demographics
data)

Jefferey
et al49

(2018)

Prediction model
validation

Retrospective
single-center
cohort

ML algorithms 0.85 (AUROC)
0.27 (F1 score)

Vital signs,
laboratory
tests, ICD-10
diagnosis,
demographic
data

Cardiopulmonary
arrest

48 h

Churpek et al16

(2016)/
eCART

Prediction model
validation

Retrospective
multicenter
cohort

ML algorithms 0.77(AUC) Vital signs,
laboratory tests,
demographic
data

Cardiac arrest/death/
unanticipated
admission to
intensive care

24 h

Kipnis et al12

(2016)/
AAM

Evaluation of
implemented
system

Retrospective
multicenter
cohort

Discrete-time
LR

0.82 (AUC) Vital signs,
laboratory tests,
severity of illness,
comorbidity index,
demographic data

Unanticipated
admission to
intensive care

12–24 h

Pimentel et al50

(2021)/
HAVEN

Evaluation of
implemented
system

Retrospective
multicenter
cohort

ML algorithms 0.90 (AUC) Vital signs,
laboratory tests,
comorbidities
index, frailty

Cardiac arrest/
unanticipated
admission to
intensive care

24–48 h

Blackwell et al5

(2020)
Prediction model

validation
Retrospective

single-center
cohort

Multivariate
regression
analysis

0.71–0.84
(AUC)
depending
on outcome

Vital signs, laboratory
tests and
continuous 7-lead
electrocardiogram
signal

Unanticipated
admission to
intensive care

12 h

ICD-10, International Classification of Diseases – version 10.

J Patient Saf • Volume 18, Number 6, September 2022 Prediction of All-Cause Clinical Deterioration
general wards, preventing as much as possible their transfer to
the ICUs or any further escalation in care. This information can
also permit the medical and nursing team to selectively increase
© 2022 Wolters Kluwer Health, Inc. All rights reserved.
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surveillance for patients at high risk of deterioration, hence
trying to prevent or promptly mitigate expected deterioration
events. In the context of a global shortage of health workers, this
www.journalpatientsafety.com 583
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information can help in focusing resources on the patients that
need those the most.

A complementary use of such a model can be for patient safety
professionals in hospitals, who can make use of the prediction
data on a daily basis to audit and verify the follow-up and safety
actions taken by the healthcare team to manage the deterioration
risks, including suitability of the level of care provided to the clin-
ical status of the patient.
2)Model explainability and the road toward clinical validation
and clinician adoption
Explainability or the possibility to understand the model’s clas-

sification logic is an important feature that can facilitate the “clin-
ical interpretation” of the results by the clinicians.

In this study, the deterioration model permits a certain level of
“explainability” for most algorithms applied and in particular RF
and decision tree, in the sense that it is possible to identify the
main variables that influence most the model prediction results,
along with their respective weights. Further explainability can be
obtained with decision tree algorithm (example in Fig. 3) where
a visualization of the decision tree could be obtained, showing
the logic behind the classification (Supplementary Digital Mate-
rial 2, http://links.lww.com/JPS/A502).

Such data insight can help users understand the prediction re-
sults and facilitate any future effort to clinically interpret and val-
idate the model by an experienced panel of physicians. This “clin-
ical validation” is an important step toward the practical adoption
of the model by clinicians, where the latter are often reluctant to
use “black box” models, even when they show good results.
3)Model specificities relative to other predictive models and
possible impact on results
While most deterioration models in the literature were derived

from cases with specific outcomes of cardiac arrests, death, and
unplanned transfer to ICU (Table 3), the model elaborated in this
study was trained and validated on deterioration cases linked to
RRTactivations that were confirmed by a panel of clinical experts.
It is to be noted that RRT activation cases depict a broader image
of clinical deterioration, because they include an additional out-
come in clinical practice, which is the patient stabilization on the
floor, amounting to almost half of deterioration cases (Table 1),
in addition to the classical previously mentioned outcomes.

Furthermore, almost all of the deterioration models in the liter-
ature, which include laboratory variables (such as, for example,
those of the LAPS-2 score12) use the absolute form of the exam
values. To the best of our knowledge,21 our model is among a
few (if not the only one) that use differential (or δ) biomarker var-
iables in deterioration prediction models. It is known, however,
that changes in biomarker values (δ) within a specific timeframe
can indicate certain underlying pathophysiological changes, such
as, for example, in case of bleeding (δ in hemoglobin values) or
acute kidney injury (δ in creatinine values).

The analysis of variable importances (Fig. 3) shows that a num-
ber of differential variables (e.g., ΔSodium, ΔPotassium, ΔCRP)
have a significant weight in the model prediction function.

We believe that the results of the prediction model were im-
pacted to a certain extent by these specificities but also the broad
choice of biomarkers that intended to cover multiple deterioration
mechanisms that are common to various deterioration etiologies.
These mechanisms include but are not limited to respiratory and
metabolic acidosis/alkalosis, systemic inflammation, electrolyte
imbalance, volume imbalance, and hypoperfusion/ischemia.

Finally, we believe that the exclusion of vital signs data from
the model might have in a certain way contributed to an earlier
prediction horizon. In fact, in pathophysiological processes lead-
ing to clinical deterioration, changes in biomarkers usually occur
hours before clinical signs and symptoms. Furthermore, even in
584 www.journalpatientsafety.com
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hybrid models (where variables comprise vital signs, laboratory
data, and other patient data), the importance of biomarkers could
have been eclipsed by the direct association (however, late in mat-
ter of prediction) between the occurrence of clinical signs (vitals)
with the deterioration event outcome. Further research might be
needed to better elucidate the relation between the choice of vari-
able type and the impact this has on the prediction horizon of clin-
ical deterioration models.

LIMITATIONS
The study was conducted in a single center, which might have

amplified the effect of certain factors on the results, such as the
quality of the medical documentation and the specific practice
of exam prescriptions for diagnosis and monitoring. An external
and a prospective validation of the study model should be a under-
taken to understand its performance in a real clinical context, be-
fore it can be implemented as a clinical decision support system.

In addition, the number of deterioration events per explanatory
variable is relatively small, which might have impacted to a cer-
tain extent the performance metrics and the statistics of the vari-
ables’ importance. This is due to the limited sample size of the
study. However, it corresponded to almost 2 years of systematic
data collection of deterioration events in our hospital and a thor-
ough and time consuming validation by an expert panel of the
cases outcome.

CONCLUSIONS
We have developed and validated an explainable prediction

model for inpatient deterioration in general wards, trained on ex-
pert validated deterioration events with RRTactivation. Themodel
is mainly based on biomarkers, without use of vital sign data. The
model performed better than most criterion standard track-and-
trigger systems, both in prediction performance and prediction ho-
rizon. Such a model can also be suitable for hospitals with limited
resources and a basic EMR. Further increase of the data sample
could contribute to improving its performance, and the model
would gain to be externally and prospectively validated.
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