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Figure 1. Interactive rainbow boxes for supporting antibiotic prescription
decision. The available drugs for urinary infections are shown in columns.
Each of the five boxes represent a patient condition. Colored boxes stacked
at the bottom are the selected one, the grayed boxes are unselected. Here, the
user selected “Cystitis” and “Adult with risk of complication”. The vertical
stacked height of the colored boxes gives a score for each drug. Here, the drug
with the highest score is “Nitrofurantoin”, and thus the system recommend
Nitrofurantoin for treating this patient.

Abstract—Artificial neural networks are machine-learning al-
gorithms inspired by biological neural networks. Their main
inconvenient is their “black-box” nature: while they are very
efficient for making predictions, it is difficult to explain these
predictions. In this paper, we propose a visual translation
of the reasoning performed by simple neural networks, i.e.
without hidden layers. This visualization relies on rainbow boxes,
a recently-introduced technique for set visualization, and on
three improvements we propose for rainbow boxes, including
interactivity. We also present a small application of the proposed
approach to decision support in antibiotherapy, for helping a
physician to choose an antibiotic in urinary infections.

Index Terms—Explainable artificial intelligence (XAI), artificial
neural networks, medical decision support, set visualization.

I. INTRODUCTION

Artificial neural networks [1] are algorithms inspired by
biological neural networks in the brain. They are used for
machine-learning and for making prediction. The base unit
of an artificial neural network is the perceptron, which is an
artificial neuron. A perceptron has n inputs I and produces
one output O. A weight wi is associated with each input Ii.
As a processing unit, the perceptron computes the weighted
sum of its inputs, by multiplying the value of each input by
its weight and summing them, and then it applies on the
result the activation function f. Typical activation functions

are the threshold function (returning 1 if x is above the
threshold and 0 otherwise) or the sigmoid function. Thus,
the output is computed with the following formula: O =
f(I1 × w1 + I2 × w2 + ...+ In × wn).

Perceptrons can be organized in networks. Simple neural
networks, made of a single layer of perceptrons, can achieve
simple reasoning and solve linearly separable problems. On
the contrary, non-linear problems require several layers. Deep
learning usually involves many layers. However, despite this
limitation in terms of reasoning power, a single layer of
perceptrons may be sufficient for decision support in some
real-life problems. An example is antibiotherapy: the physician
has to choose an antibiotic drug to prescribe, and R Tsopra et
al. [2] have shown that the most appropriate antibiotic can be
determined by the linear computation of a score.

One of the main problems of neural networks is that they
are “black-boxes”: they make a prediction but they do not
explain to the user why they made this particular prediction.
Explainable Artificial Intelligence (XAI) is a research field that
focuses on designing intelligent systems able to explain their
recommendations to a human being. Two main approaches
were distinguished [3]: (a) interpretable models, which rely
on non-black box systems such as rules or formal ontolo-
gies, and (b) prediction interpretation and justification, for
generating explanations for the prediction made by a black
box algorithm. The same authors also mention visualization
as another approach. In particular, visualization can be used
along with approach (a): through visual reasoning, it can be
used to turn a “black-box” model into a visually interpretable
model. In a previous work, we proposed a visual translation of
the reasoning of a single perceptron [4], using rainbow box, a
technique we recently introduced for set visualization [5], [6].

In this paper, we will increase the complexity and focus on
neural networks with several perceptrons but a single layer.
We will also propose several extensions to rainbow boxes,
and present a simple application to medical decision support
in urinary antibiotherapy.

The rest of the paper is organized as follows. Section II
presents related works in the literature, as well as our previous
work on the visualization of a single perceptron. Section
III describes three extensions to rainbow boxes, that will be
used in the following of the paper. Section IV shows how
these extensions allow using rainbow boxes to represent the
reasoning of a simple neural network. Section V describes



Figure 2. An example of a perceptron with 3 boolean inputs (I1, I2 and I3,
left) and a dataset. The table (middle) shows the value of the inputs for each
of the 3 input vectors labelled a, b and c. Weight w1, w2 and w3 the three
inputs. Each input corresponds to a set/box on the rainbow boxes (right), and
each input vector to an enlement/column.

a small application in the field of medical decision support.
Finally, section VI discusses the results of the presented works
and their limits, and concludes with perspectives.

II. RELATED WORKS

In the literature, many recent works focused on the visu-
alization of the learning of neural networks [7]. However,
many of the proposed approaches were designed for helping
engineers to understand how learning evolves, and to identify
possible problems or suggest improvements. On the contrary,
few aimed at explaining to the final user the reasoning
performed by the neural network, or at allowing them to
reproduce visually the reasoning. In Hohman et al. [7] survey,
almost all surveyed papers were interested on explainability
(36 out of 38, 95%), but only 11 out of 38 (29%) targeted
the final user. In addition, all of them were focused on
computer vision. Explaining computer vision is usually done
by annotating the image and highlighting the image regions
that lead to the system’s output, e.g. [8]. While this approach
is easy to understand, it does not generalize outside computer
vision.

Here are a few example of proposed works: (1) Decision
Boundary Maps [9], [10], [11] consists in projecting the input
space in two dimensions, and using colors to indicate the
output of the classifier at each point. They can be applied
to any classifiers, including neural networks. Boundary Maps
show whether the various classes are well-separated, and
which are the “near-missed” classes for a given input, but they
do not explain why an input is classified in a given class. (2)
Several approaches consist in visualizing part of the weights
learned in neural networks as multidimensional data, e.g.
using dimension reduction such as PCA (Principal Component
Analysis) [12] or the grand tour [13]. (3) Beyond visualization,
verbalization has been proposed for explaining the prediction
of machine learning [14], but the authors focused on decision
trees, which are “less black-boxy” and easier to analyze and
interpret, compared with neural networks.

In a previous work [4], we introduced the use of weighted
rainbow boxes, a typed-set visualization technique, for trans-

Figure 3. An example of non-rectangular weighted rainbow boxes, with
wAb = 1.5, wBc = 1.0, wBd = 2.0 and wCb = wCc = 2.0.

lating visually the reasoning of a single perceptron. Figure 2
shows a simple example. The visualization of the reasoning
of a perceptron with boolean inputs can be formulated as a
set visualization problem : we considered each input vector as
an element and each input as a set.

Rainbow boxes display the elements to be compared in
columns, and the sets in labeled rectangular boxes that cover
all the columns corresponding to the elements in the set.
Larger boxes are placed at the bottom and two boxes can be
side-by-side as long as they do not cover the same columns. A
box can have holes, if the elements in the set are not displayed
in consecutive columns. Finding the optimal column order that
minimizes the number of holes is a combinatorial optimization
problem with a factorial complexity. We proposed heuristic
[5], [6] and metaheuristic [15] algorithms to solve this problem
in a satisfying time, up to about 50 columns in real time and
more than 200 otherwise. Finally, in weighted rainbow boxes,
box height is used as an additional visual variable to encode
the weight of the input.

III. EXTENSIONS FOR RAINBOW BOXES

A. Non-rectangular weighted rainbow boxes

Non-rectangular weighted rainbow boxes extend rainbow
boxes with weights defined on a per-membership basis, i.e. for
each (element, set) pair. The weight indicates the “importance”
of the membership: a strictly positive weight implies that the
element belongs to the set, while a weight of zero implies that
the element does not belong to the set. Negative weights are
not allowed, nor weight strictly between 0 and 1 (because a
sufficient vertical space is needed for writing the box label).

Graphically, the weight of a (element, set) pair is repre-
sented by the height of the set’s box in the given element’s
column. This leads to irregular or non-rectangular boxes when
the weights are not the same for the various elements of a
given set (Figure 3).

B. Deformable “soft” boxes

In some circumstances, holes or gaps may be present in
the visualization (see examples in Figure 4). A deformable
“soft” box is a box that can be deformed in order to tight the
box stack and fill gaps or holes. They are especially useful in
non-rectangular weighted rainbow boxes, because the irregular
shapes of the boxes increase the number of gaps between them.



Figure 4. Example of a gap (for Element a) and a hole (for Element c).

Figure 5. Examples of normal “rigid” boxes (left) and deformable “soft”
boxes (middle and right). The example on the right shows the restriction of
the deformation, in order to keep the box in a single part.

A deformable “soft” box is made of several rectangular
parts, one for each column the box spreads over. Each part
has a fixed height and can move vertically independently, to
fit to the boxes below it. The vertical movement is allowed
as long as the parts of the box remain connected, i.e. the box
must remain a single visual entities and cannot be split in two
parts. Figure 5 shows examples of the behavior of standard
rigid boxes vs deformable “soft” boxes.

C. Interactive rainbow boxes

Interactive rainbow boxes let the user select a subset of
the boxes, in order to display them and in particular to
visualize and compare their weights. By default, all boxes
are unselected. Unselected boxes are grayed and “floating” at
the top of the visualization (see Figure 6). Then, the user can
select a box by clicking on it. Selected boxes are colored and
moved at the bottom of the visualization. They are stacked,
using deformable “soft” boxes as detailed above. The boxes at
the top and at the bottom are ordered vertically independently
from each other, using the standard rules for rainbow boxes
(i.e. largest boxes at the bottom). Finally, selected boxes can be
deselected by clicking them again. When a box is deselected,
it becomes grayed again, and moves back to the top of the
visualization.

IV. VISUALIZATION OF THE REASONING OF SIMPLE
NEURAL NETWORKS

In this section, we show how we can visualize the reasoning
of simple neural networks, with (a) Boolean inputs (the false
and true values being represented by 0 and 1, respectively),
(b) a positive real output, (c) strictly positive weights, (d) no

Figure 6. Examples of interactive rainbow boxes, before user interaction
(left), after the user clicks on the Set B box (middle) and after a second
click, on the Set A box (right).

Figure 7. An example of an artificial neural network with 3 inputs and 2
outputs (left) and the corresponding visual representations using interactive
non-rectangular weighted rainbow boxes (right), after the user clicked on the
I1 and I2 boxes to activate the corresponding inputs. Thus, the input vector
visualized is (1, 1, 0).

bias, (e) several output perceptrons but no hidden layer, and
(f) a no-op activation function fnoop with fnoop(x) = x.

The visualization of such a neural network can be con-
sidered as a set visualization problem, in which the inputs
neurons I1,..., Ii,..., In are the sets (i.e. the boxes in rainbow
boxes) and the output O1,..., Oj ,..., Om are the elements (i.e.
the columns). For each input, we define the set SIi of the
outputs Oj for which the weight wij between Ii and Oj is not
zero, i.e. SIi = {Oj : wij 6= 0}. These sets can be represented
using non-rectangular weighted rainbow boxes For a given (Ii,
Oj) pair, the box height is the corresponding weight wij in
the neural network. Figure 7 shows a simple example.

Using interactive rainbow boxes, we can make the system
dynamic, allowing the user to select the desired boxes. Boxes
correspond to inputs, and selected boxes to activated inputs:
Ii = 1 if box Ii is selected and Ii = 0 otherwise. By
clicking on boxes, the user can activate or inactivate the
corresponding inputs. This allows the user entering the input
values interactively. Boxes corresponding to activated inputs
are moved at the bottom of the visualization; this allows
the visual computation of the weighted sum of the activated
inputs, in each column (i.e., for each output). In Figure 7, two
inputs have been activated.
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I1 I2 I3 I4 I5 First choice Second
choice

R1 1 0 0 0 1 nitrofurantoine enoxacine
lome-
floxacine
norfloxacine
ofloxacine

R2 1 0 0 1 0 nitrofurantoine ceftriaxone
R3 1 0 0 0 0 fosfomycine

trométamol
enoxacine
lome-
floxacine
norfloxacine
ofloxacine

R4 0 1 0 0 1 ofloxacine levofloxacine
R5 0 1 0 1 0 ofloxacine levofloxacine
R6 0 1 0 0 0 ofloxacine levofloxacine
R7 0 0 1 0 1 ofloxacine levofloxacine
R8 0 0 1 1 0 ceftriaxone cefixime
R9 0 0 1 0 0 ofloxacine levofloxacine

Table I
THE 9 RULES DERIVED FROM THE ANTIBIOTIC KNOWLEDGE BASE.

“ADULT COMP.” STANDS FOR “ADULT WITH RISK OF COMPLICATIONS”.

V. APPLICATIONS TO VISUAL DECISION SUPPORT IN
ANTIBIOTHERAPY

In this section, we will present an application in the field of
antibiotherapy for urinary infections in primary care. Antibi-
otic prescription consists in choosing one antibiotic among all
the antibiotics which are potentially efficient for treating the
infection and safe for the patient (or possibly choosing to not
prescribe an antibiotic, e.g. for viral infections). Inappropriate
prescriptions increase the risk of complications and favors the
emergence of antimicrobial resistance. The optimal treatment
depends on the specific indication, i.e. the organ infected
(urinary bladder → cystitis, prostate → prostatitis, kidney
→ pyelonephritis), and the patient profile (normal, child, or
adult with risk of complications). We propose an interactive
decision support system, in which the physician enters the
patient infection type and profile, and obtains the antibiotics
recommended in first and second choices.

A. Designing and learning the neural network

In a previous work [16], we built a knowledge base on
antibiotic properties. From this knowledge base, we extracted
9 rules for the prescription of antibiotics for urinary infections
(Table I). Each rule correspond to a specific indication and a
patient profile, and lists the antibiotics recommended in first
and second choices. For instance, the first rule states that
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O1 O2 O3 O4 O5 O6 O7

I1 Cystitis 0 1 5 6 6 0 7
I2 Prostatitis 0 0 0 0 4 1 0
I3 Pyelonephritis 0 0 0 0 4 1 0
I4 Children 5 6 4 0 0 0 0
I5 Adult comp. 0 0 4 2 2 4 0

Table II
THE WEIGHTS LEARNED FROM THE 9 RULES.

Figure 8. The resulting neural network. Weights are given in Table II.

cystitis in adult with risk of complication should be treated by
nitrofurantoin or (if not possible) by enoxacine, lomefloxacine,
norfloxacine or ofloxacine.

In a second step, we designed a neural network with 5 inputs
(corresponding to the 5 conditions considered by the rules in
Table I) and 7 outputs (corresponding to the antibiotics in
Table I; 3 of them, enoxacine, lomefloxacine and norfloxacine,
were grouped together for learning purpose, because they
behave identically in Table I). This neural network has 35
(= 5× 7) weights. In order to guarantee that the weights are
visually distinguishable, we used positive integer values for
weights. For a given specific indication and patient profile,
the neural network compute a score for each antibiotic. The
antibiotic with the highest score is the one recommended by
the system in first choice, and the second best is the second
choice. In case of ex-aequo, several antibiotics are ranked at
the same level.

The values of the weights were learned using the Artificial
Feeding Bird (AFB) metaheuristic [15]. We minimized both
the error rate (compared to the antibiotics recommended by the
rules in Table I) and the total sum of weights, in order to limit
the visual space needed by the visualization and to maximize
the number of 0 in the weights. The 35 weights define a 35-



Figure 9. Interactive non-rectangular weighted rainbow boxes showing the
available antibiotics for urinary infections. The screenshot at the top shows
the unselected boxes before user interaction. The bottom screenshot shows
the boxes after the user clicked on the “Cystitis” box to select it. Figure 1
shows the boxes after the user clicked on both the “Cystitis” and “Adult with
risk of complication” boxes.

dimension space. In this space, a point is a potential solution,
represented by the position of a bird in the AFB algorithm.
The possible number of solutions is very high (about 2.8×1038
if we consider only weights between 0 and 10); the algorithm
tested about 2.6× 106 solutions and found one with an error
rate of 0. Table II shows the resulting weights and Figure 8
the resulting network.

B. Interactive visual decision support application

The resulting decision support application is shown in
Figure 9 and 1. Antibiotics are shown in columns, and the
patient conditions are shown in non-rectangular boxes. By
default, all boxes are inactive, grayed and floating at the top
of the screen. Then, the user can click on a box to activate
it; activated boxes are colored (in arbitrary colors), moved to
the bottom of the screen, and deformed so as they fit with the
boxes below them.

By summing the height of the selected boxes in each
column, it is possible to compute a score for each an-
tibiotic. In this application, higher scores are the best.
Therefore, in Figure 9 (bottom), the first-choice antibiotic
is fosfomycine-trometanol (highest boxes), and the second-
choice are enoxacin, lomefloxacin, norfloxacin and ofloxacin
(second highest). In Figure 1, the first-choice is nitrofurantoin

and the second-choice are enoxacin, lomefloxacin, norfloxacin
and ofloxacin. The visualization supports the determination of
the first and second choice antibiotics according to the patient
profile entered by the user, but it also shows visually the
contribution of each patient condition in the final result. For
example, in Figure 1, it is clear that nitrofurantoin is the first
choice due to the “Adult with risk of complications” condition,
but it was not the first nor the second choice for cystitis in
the general situation. Finally, it also allows answering “what-
if” question even before interacting with the system: before
the user clicks on a box, he can already see the shape of the
box and deduce how it will impact the recommendation of
the system. For example, one can see in the grayed boxes that
the “Child” condition mainly favors Ceftriaxone, while “Adult
with risk of complication” mainly favors Nitrofurantoin and
Levoxacin.

VI. DISCUSSION AND CONCLUSION

In this paper, we extended rainbow boxes with irregular
boxes, deformable boxes and interactivity, and we showed how
these extension allows to translate visually the computation
performed by a simple neural network with Boolean input
and no hidden level. In particular, the proposed visualization
method can be used to compute a score for ranking vari-
ous items displayed in the columns of rainbow boxes. We
described a decision support application in antibiotherapy.

Many methods exist for training a neural network made
of several perceptrons, the most common being back-
propagation. However, visual constraints must also be satisfied
in addition to the domain constraints, in order to obtain an
efficient visualization. The visual constraints here were related
to the minimum height of the boxes (in order to display a
label), the limited height of the computer screen, the difficulty
of the Human vision to compare very similar heights, and the
exclusion of negative weights. This is why we used AFB, a
more general optimization algorithm than back-propagation,
for learning the neural network.

While machine learning was necessary to design the system
and learn the weights of the neural network, it is important
to notice that, when using the resulting decision support tool,
no neural network computation is performed on the computer.
Consequently, the proposed approach can be seen as a visual
algorithm, i.e. an algorithm specifically “compiled” for been
“executed” by the human vision. Human vision is known to
be very efficient, and highly parallel, at least for some specific
task [17]. In our previous works, we proposed similar visual
algorithms for the perceptron [4], but also for a specifically-
designed case-based reasoning algorithm [18]. These examples
illustrate two possible approaches for designing visual algo-
rithms: either translating visually an existing formal reasoning,
or design a new and specific formal reasoning that takes
into account visual constraints and requirements. This is quite
different from the visual algorithm simulation described in
the literature [19], and consisting in visual simulation of



algorithms for teaching purpose. It is closer to a formalized
form of visual reasoning.

Another possibility for extending interactivity in rainbow
boxes would be to let the user adjust the height of the boxes
(and thus the weight of the inputs). This would provide a
mean for the user to specify his personal preferences, for
example by increasing or decreasing the weight associated
to a given input. In the antibiotherapy application, evidence-
based medical recommendations must be followed and thus it
does not really make sense to adjust the weights. However, in
a different application, it can be an interesting option.

The main limitation of this work is the low complexity
and size of the presented neural network (5 inputs and 7
outputs). In addition, usual limitations of neural networks with
no hidden level apply, notably the well-known impossibility to
perform exclusive-or and solve non-linear problem. However,
while the complexity and the learning abilities of simple neural
networks are far beyond the capabilities of deep learning
with many perceptrons and layers, simple neural networks can
still be sufficient for solving some real-world problems, even
in complex domains like medicine. Moreover, these simple
network can be fully explained visually, as we showed here.
In the literature, stacked bar charts were proposed to explain
linear models [20]. In the future, we plan to work on more
complex networks.

Another limitation is the presence of gaps and holes in
boxes, which complicate the visual computation of the output
value, because in these cases the boxes are not tightly stacked.
However, at least when a single hole or gap is involved,
this does not totally prevent the visual comparison of the
output values. Moreover, deformable “soft” boxes (section
III-B) reduce the impact of gaps.

We also restricted our work to neural network with real
output and not activation function. However, our work could
easily be adapted to networks with Boolean output and a
threshold activation function, by showing an horizontal line
behind boxes, as we proposed previously with the perceptron.

Compared to our previous work in antibiotherapy [4], using
a single perceptron, the proposed decision support tool does
not describe the properties of each antibiotic, but it is able
to manage several clinical situations. On the contrary, in the
previous one, a given visualization was restricted to a single
clinical situation (e.g. cystitis in child).

The main perspectives of this work are following: (1) test
our approach on bigger neural network, (2) evaluate these
decision support applications with users, e.g. through user
study or case studies, (3) extend the proposed approach to
more complex neural networks, e.g. with one hidden level,
and (4) explore the ability to let the user adjust the box height
for taking into account user preferences.
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