
Formalization of the semantics of iconic languages: An ontology-based method and four
semantic-powered applications

Jean-Baptiste Lamya,∗, Lina F. Soualmiab,a

aLIMICS, Université Paris 13, Sorbonne Paris Cité, 93017 Bobigny, France, INSERM UMRS 1142, UPMC Université Paris 6, Sorbonne Universités, Paris, France
bLITIS EA 4108, NormaSTIC CNRS FRE 3638, Université de Rouen Normandie, France

Abstract

Iconic languages can represent concepts by the combination of graphical components (such as colors or pictograms). There are
numerous examples, from traffic signs to computer user interface icons. However, these languages do not associate formalized se-
mantics to their icons, which raises various problems: inconsistent combinations of graphical components, different interpretations
of a given icon by two persons, difficulties to map the icons to the concepts of existing termino-ontological resources, etc.

In this article, we describe a method that formalizes the semantics of an iconic language with an ontology. This method was
initially developed for the VCM iconic language (Visualization of Concepts in Medicine), which enables to represent the main
medical concepts (antecedents, disorders, treatments, etc.) by icons. We show that it can be generalized to other iconic languages,
including traffic signs. We also describe four practical applications made possible by the formalization of the language semantics:
the verification of icons consistency, the semi-automatic alignment with terminologies, the automatic generation of a pictogram
lexicon and the automatic generation of icon labels. The article also presents the VCM ontology, the implementation details of a
semantic iconic server with fast response times, and the evaluation results obtained when evaluating the four applications.

Keywords: Icons, Iconic language, Semantics, Ontologies, Alignment, Medicine

1. Introduction

It is well known that “a picture is worth a thousand words”.
This is why many icons, symbols and pictograms are used [1] in
various domains such as Human-computer interfaces on com-
puters, tablets and mobile phones, signage in public places or
chemical product labeling. However, one cannot remember an
infinite number of signs and, therefore, when it is necessary to
represent a high number of concepts, it is not possible to learn
a specific icon for each concept. In this case, the solution con-
sists in the design of an iconic language with a proper syntax
and semantics. It allows the generation of numerous icons by
the combination of a limited number of components, such as
colors or pictograms, and it can also improve the interpretation
of icons [2].

Several iconic languages have been designed for specific do-
mains. Examples include Stabilis [3], a database on the stabil-
ity and compatibility of injectable drugs, which uses icons for
allowing a multilingual access, and OMICtools [4], an infor-
mative directory of software and resources for bioinformatics,
which uses icons for categorizing the various types of tools.
Traffic signs are well-known everyday life examples: these

∗Corresponding author
This is an author file of the article published in Knowledge Based System,
DOI: https://doi.org/10.1016/j.knosys.2017.08.011 ; it is available under Cre-
ative Commons Attribution Non-Commercial No Derivatives License.

Email addresses: jean-baptiste.lamy@univ-paris13.fr
(Jean-Baptiste Lamy), lina.soualmia@litislab.fr (Lina F.
Soualmia)

signs are used to give orders (for example, a speed limitation)
to drivers or to inform them about dangers (such as danger-
ous curves), directions or commodities. Traffic signs are com-
posed using a simple iconic language, by assembling several
elements such as a red circle, a left-turn pictogram, etc. The
iconic aspect of this language serves two objectives: the signs
must be read quickly and they should be independent from nat-
ural languages (for foreigners). Another more complex exam-
ple is the VCM (Visualization of Concept in Medicine) medical
iconic language [5]. It can represent the main medical con-
cepts, such as disorders, risks, treatments, by icons. This iconic
language was designed in order to help health professionals to
access medical documents. In fact, the volume of medical data
and knowledge has grown considerably over the last decades
and the extensive reading of patient records, drugs summary of
products characteristics (SPCs) or clinical practice guidelines is
a very long and difficult task [6].

We designed VCM ten years ago, and various VCM-powered
medical applications have been developed, some of them being
routinely used. VCM was initially invented for presenting drug
knowledge, such as the contraindications and adverse effects of
a given drug in a drug database [5, 7]. It was then extended
for representing patient disorders and physiological states, with
applications to medical search engines [8], clinical guidelines
[9] and the visualization of patient health records [10]. Dur-
ing this decade of evolution, the need for semantics has been
increasingly pressing as the language grew in size and com-
plexity, and as the applications became more numerous. Users
created nonsense icons. Experts started to use the same pic-

Preprint submitted to Elsevier September 5, 2017

togram with a slightly different meaning. Medical application
developers asked for mappings between VCM and the standard
terminological resources they used.

The grammar and the semantics of iconic languages are of-
ten informal, or at best described textually (as it was originally
the case for VCM). This leads to vagueness in the semantics.
Additionally, all tasks relative to the semantics of the language
must be performed manually, for example for the production of
a pictogram lexicon or the writing of icon labels. Moreover,
a grammatically correct icon can still be semantically wrong:
for example, a traffic sign with the red triangle meaning “atten-
tion” and the “snow tire” pictogram is a nonsense. The absence
of a logically validated semantics also makes it more difficult to
align the icons with other resources such as the existing termi-
nologies or ontologies of the domain. Alignments with terms
or concepts must be performed manually by an expert who in-
terprets the icons, but, as any human interpretation, it is poten-
tially subjective. According to Erwig [11], the formalization of
graphical languages has four interests: (a) improving the com-
prehension of the language, (b) facilitating its implementation,
(c) performing automatic reasoning on the language, and (d)
helping with the integration of the language in other environ-
ments.

In this article, we describe a method that formalizes the se-
mantics of an iconic language using a formal ontology, divided
in three modules: the icon ontology, the domain ontology and
the mapping ontology. This method was originally designed
specifically for checking the consistency of VCM [12] and then
reused for mapping VCM to a subset of a medical terminology
[13]. Here, we present our method in a more detailed fashion
by putting the emphasis on the developing steps, including im-
plementation and technological aspects. Additionally, we pro-
vide an up-to-date state of the art related to the formalization
of graphical languages. We also generalize the method to other
iconic languages, and we apply it to traffic signs as a proof of
generalizability. Four semantic-based applications on VCM are
presented, illustrating the four objectives proposed by Erwig.
Based on our experience with VCM, we can hypothesize that
formalizing the semantics of iconic languages could improve
their coherence, and facilitate their use and their dissemination.
More generally, many icon sets in daily-used graphical user in-
terfaces follow some grammatical or semantic rules, and the
formalization of their semantics could lead to similar benefits.

The paper is organized as follows: section 2 presents the pre-
vious works related to the formalization of graphical languages.
Section 3 gives a reminder on Description Logics (DLs) nota-
tions. Section 4 presents the formalization method. Section 5
describes the use of this method in the context of traffic signs.
Section 6 does the same for VCM, and describes four practical
applications made possible by the formal expression of the lan-
guage semantics: (a) the verification of icon consistency, (b) the
semi-automatic alignment of the icons with a domain terminol-
ogy, (c) the automatic generation of a pictogram lexicon to help
the comprehension of the language, and (d) the automatic gen-
eration of multilingual icon labels. Finally, section 7 discusses
the advantages and the limits of our approach.

Road works

Temporary

Danger

Attention

Figure 1: Semiotic structure of the traffic sign meaning “attention road works”,
according to Meunier [14, 15].

2. Related works on the formalization of graphical lan-
guages

Most of the literature on the formalization of graphical lan-
guages is about 20-year old, which corresponds to the period of
the emergence of graphical user interfaces and visual modeling
languages. Today, icons are everywhere on computers, mobile
phones and tablets, but paradoxically, less attention is paid to
the formalization of their semantics. Recent works focus on
graphical design [16] and usability evaluation [17], rather than
on the semantics itself. In the medical field, two examples of
such works involve the icon design for a user interface of re-
mote patient monitoring mobile devices [18], and for creating
icons for an emergency medical information system, using par-
ticipatory design [19]. Several icon taxonomies were proposed,
for instance according to the iconic representation strategy [20]
or the objective/context in which the icons are used [21]. Other
recent works try to understand how icons are perceived by the
brain, for example a neuro-imaging study showed that icons
stimulate the semantic system in the brain, but they are cogni-
tively processed as pictures rather than words [22]. In the rest
of this section, we focus on studies related to the semantics of
icons.

Historically, graphical languages were first studied from a
semiologic point of view [14, 15]. These studies typically con-
sisted in breaking down graphical signs such as traffic signs (see
Figure 1), in order to associate with each component (color,
pictogram, etc.) one aspect of the meaning of the global sign.
While easy to understand, this approach did not allow a true
formalization of iconic languages.

Then, another kind of works emerged with the design of
grammar for visual languages. Several approaches were pro-
posed, including constraint multiset grammars [23] which were
inspired by Chomsky’s grammars, positional grammars [24]
which were based on a classical textual grammar comple-
mented by a position evaluator in charge of the translation of the
textual sentences into graphics. These grammars were used for
writing parsers and compilers. These approaches were in par-
ticular applied to diagrammatic visual languages such as visual
programming or querying languages, where a computer pro-
gram or a database query is expressed by a diagram. Zolotas

2

Syntax Description Semantics

Constants > Thing / Top ∆I

⊥ Nothing / Bottom ∅ (empty set)

Axioms TBox A v B A is subsumed by B AI ⊆ BI

A ≡ B A is equivalent to B AI = BI

ABox A(i) i is an instance of A iI ∈ AI

R(i, j) i and j are related by role R (iI, jI) ∈ RI

Constructors ¬A Negation of concept A ∆I\AI

A u B Intersection of A and B AI ∩ BI

A t B Union of A and B AI ∪ BI

∃R.B Exists restriction {a ∈ ∆I | ∃b, (a, b) ∈ RI and b ∈ BI}
∀R.B Universal restriction {a ∈ ∆I | ∀b, (a, b) ∈ RI → b ∈ BI}
R− Role inverse {(a, b) ∈ ∆I × ∆I | (b, a) ∈ RI}

Disjoint axiom A u B v⊥ A and B are disjoint AI ∩ BI = ∅

Table 1: The syntax and the semantics of a DLs knowledge base O. A and B are concepts, R is a role, i and j are individuals. Disjoint axiom has been added for
convenience, it is inferred by combining intersection and subsumption.

et al. [25] proposed to extend modeling diagrams with iconic
attributes such as shape, color or position, and to associate a
domain-specific semantic to these attributes. The authors pro-
posed several examples, such as modeling football players and
using colors to identify teams. While this “mix” of diagram and
icons is interesting, the associated semantics is not formalized.

A US patent targeted pluggable notations and semantics for
modeling diagrams [26]. The system associates semantic ob-
jects with notation objects. The proposed application was the
interoperability between several visual or non-visual languages,
e.g. designing a modeling diagram in UML (Unified Modeling
Language) and then switching to another notation such as C++
class definitions, while keeping the same semantics.

Another approach consisted of transforming the expressions
of a graphical language into oriented labeled graphs, without
the definition of the grammar, thanks to the use of an abstract
visual syntax [11, 27]. The resulting graph could then be used
for expressing the semantics and for computing proofs. In par-
ticular, abstract visual syntaxes were defined for graphical lan-
guages deriving from lambda calculus.

Finally, several approaches tried to describe graphical lan-
guages from a lexical and syntactical point of view. The first
one used Description Logics (DLs) to formalize logical defini-
tions such as “an inheritance relation is a line that connects the
boxes of two class and that has a triangle at one of its extrem-
ities” [28]. Another approach used UML schema for defining
the concrete syntax of a visual language [29]. The correctness
of the syntax definition could be proved using first-order logic,
ensuring that a given diagram corresponds to only one model.
More recently, an approach based on the local context was pro-
posed [30], targeting schematic graphical languages. It allowed
a lexical and syntactic definition of the language, by defining
the graphical elements of the language (boxes, arrows, etc.) and
the possible connections between them (including minimal and
maximal cardinalities, etc.). These two approaches were inter-
esting for describing graphical languages but they were limited

for the expression of semantics.
Kuicheu et al. proposed an ontology of icons named IcOnto

[31], aimed at formalizing icons using DLs. The authors de-
fined an icon as the intersection of a physical part, the image
itself described by graphical attributes such as color and shape,
and a logical part, the set of attributes or characteristics com-
monly associated with the icon (e.g. an emotion, an activity, a
number, a sound). The ontology allowed the inference of at-
tributes according to subsumption relations, but the reasoning
capabilities seems limited beyond this simple example.

To conclude this section, several approaches were proposed
in the literature about the formalization of graphical languages.
Many of them relied on grammars, event for the expression
of the semantics. However, most of the proposed approaches
targeted schematic or diagrammatic languages such as UML
rather than icons or iconic languages.

3. Description Logics (DLs)

In this section, we provide a reminder of DLs; for a more de-
tailed presentation the reader should refer to the literature [32].

Description Logics are a well-known family of knowledge
representation formalisms. They are fragments of first-order
predicate logic and are equipped with a formal, logic-based se-
mantics. An ontology O can be defined as a DLs knowledge
base O =≺ T A � composed by a set of logic axioms Φ. The
axioms are built using a set of individuals I = {i, j, ...}, a set of
concepts C = {C,D, ...}, a set of roles R = {R, S , ...}, and a set
of constructors S. Four types of axioms are considered: C v D
(subsumption), C ≡ D (equivalence), C(i) (instantiation) and
R(i, j) (relation). Constructors are used for combining concepts
and/or roles (depending on the constructor) and defining a new
concept or role. The set of constructors depends of the DLs
family considered, in this paper we will use the DL ALCI in
which S = {¬,u,t,∀,∃,R−}. Table 1 lists the 4 types of axioms
and the 6 constructors. The set of axioms of an ontology O is

3

Figure 2: General structure of the icon ontology (in blue on the left), the mapping ontology (in green in the middle) and the domain ontology (in red on the right).

divided into a TBox T (Terminological Box, the set of concepts
and roles axioms) and an ABox A (Assertional Box, the set of
individuals axioms). In this paper, we will only use the TBox
part.

DLs have a model-theoretic semantics, which is defined in
terms of interpretations. For a given ontology O, an interpre-
tation I = (∆I, .I) consists of the domain of the interpretation
∆I (a non-empty set) and the interpretation function .I, which
maps each concept C ∈ C to a set AI ⊆ ∆I, each role R ∈ R to
a binary relation RI ⊆ ∆I × ∆I and each individual i ∈ I to an
object in the domain iI ∈ ∆I.

The last column of Table 1 shows the interpretation associ-
ated with each axiom and constructor. Using the interpreta-
tion function, the logical axioms of the ontology can be trans-
formed into set formula, which express the semantics of the
ontology. For instance, the axiom A v B u C is translated into
f (A v B uC) = AI ⊆ BI ∩CI.

An interpretation I satisfies an ontology O if it satisfies all
axioms in O (i.e. ∀Φ ∈ O,ΦI is true). An ontology O is con-
sistent if there exists at least one interpretation I that satisfies
O (O is inconsistent otherwise). A concept C is satisfiable in
O if (and only if) there exists an interpretation I that satisfies
O such that CI , ∅ (i.e. there may exists an individual i that
belongs to C).

For a given ontology O, Φ ∈ O means that the axiom Φ be-
longs to the set O (i.e. the axiom has been asserted), and O |= Φ

means that the axiom Φ can be inferred from the axioms in
O. The simple transitivity between subsumption relations is not
considered as an inference (e.g. if O = {A v B, B v C} we will
also consider that A v C ∈ O). In fact, indirect is-a relations
can be easily computed and a DLs reasoner is not mandatory
for this task.

4. Method for the formalization of the semantics of iconic
languages

4.1. General principles

The method we present here aims at formalizing the seman-
tics while keeping a clear distinction between the syntactic and
the semantic aspects, in order to prevent confusion between
graphical objects (the icons and their components: pictograms,
colors, etc., for example the ♥ pictogram) and the objects of the
application domain that they represent (for example, the heart
organ). Therefore, we chose to represent in two distinct ontolo-
gies the syntax of the iconic language (icon ontology) and the
associated semantics (domain ontology), and then to link them
together in a third ontology (mapping ontology) that imports the
two previous ones.

Our method for the formalization of the semantics of iconic
languages follows three steps:

1. Designing the icon ontology that describes the syntax of
the icons of the language and their components.

2. Designing the domain ontology that describes the objects
represented by the icons; this ontology should be built on
existing termino-ontological resources.

3. Designing the mapping ontology that integrates the two
other ontologies by establishing links and constraints be-
tween the concepts of the icon and the domain ontologies,
using the two following relations: “<Graphical concept>
represents <Domain concept>” and “<Domain concept>
is-represented-by <Graphical concept>”.

Figure 2 shows the general structure of the three ontologies.
Description Logics is a well-known family of knowledge rep-
resentation formalisms for ontologies and we chose to for-
malize the three ontologies using this language family. The
icon ontology defines Graphical concepts, including the icons
and the Graphical components that are combined to create the

4

icons. Several subcategories of Graphical component are typ-
ically considered, such as colors, pictograms and geographic
shapes. For example, the “attention road works” road sign
(Figure 1) can be decomposed in four Graphical components:
the road work pictogram, the triangle shape, the yellow back-
ground color and the red border color. In addition, graphical
constraints can be stated in the icon ontology, for example: “a
road sign includes at most one pictogram”.

The domain ontology describes the Domain concepts. Typ-
ically, various domain objects are represented by icons (Rep-
resented domain object on Figure 2); these objects can be or-
ganized in subcategories using subclasses and is-a relations in
the ontology. Represented domain objects are commonly de-
scribed by Domain properties. For example, “attention road
works” can be described as an information regarding danger,
having for topic road works, and whose duration is temporary.
Domain constraints can be stated in the domain ontology, for
example: “road works are something drivers could encounter
while driving, but not something they can do themselves” (and
thus consequently it does not make sense to prohibit a driver
from doing road works, or to order him to do so).

The mapping ontology defines the represent/is-represented-
by relations between Graphical components and Domain prop-
erties. These relations can be used to define representation
constraints. In the previous example, the “man at work with
a shovel” pictogram is only present on traffic signs that rep-
resent instructions about road works, and road works are only
associated to instructions that are represented by traffic signs
including the “man at work with a shovel” pictogram.

Ontologies allow to define in ontology B a constraint on an
object defined in another ontology A. Consequently, despite the
representation constraints affect Graphical components and Do-
main properties, they can be asserted in a separate ontology, the
mapping ontology. This modeling choice has two advantages:
(1) it allows a clear distinction between Graphical concepts and
Domain concepts in the first two ontologies (while represen-
tation constraints involve both concepts), and (2) it makes it
easier to generate the representation constraints from another
non-ontological source, such as a text file (see section 4.2 be-
low).

In the mapping ontology, more specific relations inheriting
from “represent / is-represented-by” (i.e. sub-properties) can
be used to distinguish the different strategies for visual repre-
sentation. For instance, most authors consider three categories
of representation: (1) “true icon” that looks like the represented
object and relying on analogy (e.g. the “♥” sign, which has the
same shape as the heart organ), (b) indexes that are associated
with the object (e.g. a picture of a floppy disk for the “save” ac-
tion) and (c) symbols that are arbitrary or conventional associa-
tions (e.g. “H” for “hospital”). The last category can be subdi-
vided further in already well-known symbols and new symbols.

Consequently, constraints are formulated at three levels:
graphical constraints in the icon ontology, domain constraints
in the domain ontology, and representation constraints in the
mapping ontology.

Representation constraints allow the propagation of graph-
ical constraints towards the domain ontology, and of domain

constraints towards the icon ontology. In fact, graphical con-
straints can have an impact on the domain represented by the
language and in particular there may be some domain concepts
that cannot be represented by icons. Similarly, domain con-
straints can have graphical consequences and make some icons
inconsistent. Our formalization method allows not only to de-
scribe the syntax and the semantics of iconic languages, but it
also makes possible several practical applications using a rea-
soner engine for propagating the constraints and deducing the
semantics of a given icon.

4.2. Managing the mapping in the mapping ontology
It is natural to express the mapping as a set of triples,

e.g. (Graphical component A, represents, Domain concept A).
However, the logical constraints in the mapping ontology are
more complex than simple triples, because one constraint is
required for each Graphical component and Domain concept.
Thus, the previous example of triple actually leads to two con-
straints. Moreover, if a Graphical component or a Domain con-
cept is involved in more than one triple, they should be com-
bined in a single constraint. Consequently, authoring the con-
straints manually would be a tedious task. We propose to design
and manage the mapping using a combination of the three fol-
lowing file formats: (1) a text file containing triples, allowing
the authoring of the mapping easily, (2) an OWL file contain-
ing the mapping ontology, i.e. the representation constraints,
allowing automatic reasoning, (3) an SQL database, allowing
fast querying on the triples.

The last two formats can be produced automatically from the
text file. Triples can be stored in an SQL database1, and we
used Python scripts for generating constraints from triples. As
the representation constraints are located in a separate ontology
(the mapping ontology), it is easy to delete the corresponding
OWL file and to generate a new one whenever the text file is
modified.

Table 2 shows examples of triples and the produced con-
straints, for each of the three possible typical cases. Example
#1 is a simple one-to-one mapping between a Graphical compo-
nent and a Domain concept. Example #2 is a case of polysemy,
i.e. a Graphical component that can represent several Domain
properties (although, when included in a given icon, depending
on the other components of the icon, the polysemy may remain
or not). Polysemy is frequent in iconic languages. Example
#3 is a case of a Graphical component that represents the in-
tersection of several Domain properties (noted with “+” in the
text file). This occurs when a specific pictogram is designed
for a combination of Domain properties. In VCM, obstruction
disorders are some examples. They are represented graphically
by adding an obstruction in the organ, but the position of the
obstruction differs for each organ, thus it is not possible to fol-
low a combinatory approach (i.e. obstruction pictogram + or-
gan pictogram) and a specific pictogram must be designed for

1From a technical point of view, an RDF triplestore can be used for stor-
ing these triples. However, they are not proper RDF triples since they involve
classes and not individuals. Therefore, these triples should not be inserted in
the ontology or mixed with it – they need to be transformed into constraints
before being inserted in the ontology.

5

Triples Constraints

1 (gA, represents, dA) gA v (∀is_component_o f .(∀represents.(∃has_ f or_property.dA)))
dA v (∀is_property_o f .(∀is_represented_by.(∃has_ f or_component.gA)))

2
(gA, represents, dA)
(gA, represents, dB)

gA v (∀is_component_o f .(∀represents.(∃has_ f or_property.(dA t dB))))
dA v (∀is_property_o f .(∀is_represented_by.(∃has_ f or_component.gA)))
dB v (∀is_property_o f .(∀is_represented_by.(∃has_ f or_component.gA)))

3 (gA, represents, dA+dB)
gA v (∀is_component_o f .(∀represents.(∃has_ f or_property.(dA u dB))))
dA v (∀is_property_o f .(∀is_represented_by.(∃has_ f or_component.gA)))
dB v (∀is_property_o f .(∀is_represented_by.(∃has_ f or_component.gA)))

Table 2: Examples of mapping triples and the constraints they generate, for each of the three possible typical cases. “g” stands for “Graphical component” and “d”
for “Domain concept”.

each organ. Each of these pictograms, e.g. “obstructed blood
vessel”, represents the intersection of the obstruction alteration
and the organ.

Notice that all constraints focus on the represent/is-
represented-by relation between the icon and the correspond-
ing Represented domain object, and not directly between
the Graphical component and the corresponding Domain
property (e.g. for the first constraint in Table 2, gA v

(∀is_component_o f .(∀represents.(∃has_ f or_property.dA)))
and not gA v (∀represents.dA)). While the latter would be
simpler, it would not permit automatic reasoning with OWL
reasoners. In fact, it would require several free variables (for
asserting the following: I represents J ⇒ ∀g ∈ I,∃d ∈ J | g
represents d), while DLs are variable-free and actually
correspond to formula with a single free variable [32].

Subsumption is also taken into account : if gA and gA′ are
two Graphical components with gA′ v gA, we assume that the
triple (gA′ , represents, dA) implies (gA, represents, dA).

4.3. Formal definition of the icon semantics

In this paper we consider that an icon I is represented by
a set of Graphical components, such as pictograms, geometric
shapes and colors, and the meaning M (or the semantics) of an
icon is represented by a set of Domain concepts (Algorithm 1).
On the contrary, any set of Graphical components or Domain
concepts does not correspond to a valid icon or meaning, re-
spectively, until the previously defined constraints are satisfied.
If some pictograms can be present at several different positions
on the icon, each valid (pictogram, position) pair should be con-
sidered as a distinct Graphical component.

We also define the get_meaning(I) function, which returns
the meaning of a given icon, i.e. the set M of the Domain con-
cepts associated with the icon I. The function first uses the
mapping triples to compute, for each Graphical component, the
set of Domain concepts it can represent. Each Graphical com-
ponent represents one Domain concept, or several in case of
polysemy. D is the tuple of all these sets. Then we compute P,
the unordered Cartesian product of all sets in D. Elements in P
are the candidate interpretation for I (i.e. a choice between the
various possible polysemes). Next, P is filtered for removing
inconsistent sets of Domain concepts (i.e. sets whose conjunc-
tion is inconsistent when taking into account graphical, domain

Figure 3: Examples of signs that can be created using French traffic signs as
an iconic language. From left to right: attention road works, prohibition to turn
left, mandatory turn left, prohibition of road works. This last sign is an example
of an inconsistent icon (and thus no such traffic sign exists in real life), because
drivers are not supposed to make road works.

and representation constraints), yielding P′. Finally, the result-
ing meaning M is the union of all sets in P′. Examples will be
provided later.

In the next section, we apply the presented method to a sim-
ple example: traffic signs. In the section that follows, we apply
it to the VCM medical iconic language and we describe four
possible applications.

5. Application to traffic signs

5.1. Traffic signs
Traffic signs correspond to a simple and well-known iconic

language; they allow visually giving instructions to drivers. In
this iconic language, an icon is a traffic sign. We describe here
the French signs; small variations exist between countries but
the general principles remain the same. Four main categories of
sign can be distinguished: prohibition signs (with a red circle,
sometimes with a cross), mandatory signs (with a blue circle),
signs informing about an upcoming danger (red triangle) and
signs conveying other information (square). Temporary signs
have a yellow background while permanent signs have a white
background. Finally, a central pictogram gives the topic of the
sign.

A grammar allows combining the external shape, the back-
ground and the pictogram together (see Figure 3). However,
some combinations are senseless and semantic rules are re-
quired, in addition to grammatical rules, to avoid the creation
of inconsistent signs. For example, the “left turn” pictogram
can be present on both mandatory signs (“mandatory turn left”),
prohibition signs (“prohibition to turn left”) or danger signs

6

Algorithm 1 Icon and meaning formal definitions and interpretation.
Let us denote:
- Oicon the icon ontology
- Odomain the domain ontology
- Tmapping the set of mapping triples, Tmapping =

{
(g, represents, d)

}
where g v Graphical_component ∈ Oicon

and d v Domain_concept ∈ Odomain

- Omapping the mapping ontology, with constraints between Domain_concept in Odomain and Graphical_component in Oicon

- I an icon, I ⊆ {g v Graphical_component ∈ Oicon}

- M the meaning of an icon, M ⊆ {d v Domain_concept ∈ Odomain}

function get_meaning(I):
D =

{
{d | d v Domain_concept ∈ Odomain and (g, represents, d) ∈ Tmapping} | g ∈ I

}
P =

{
{d1, ..., d|I|},∀(d1, ..., d|I|) ∈

∏
D
}

(i.e. P is the unordered Cartesian product of the sets in D)

P′ =
{
{d1, ..., d|I|} ∈ P | d1 u ... u d|I| is satisfiable with regard to Odomain ∪ Omapping ∪ Oicon

}
M =

⋃
P′

return M

(“pay attention left turn”). On the contrary, the “man at work
with a shovel” pictogram can only be present on danger signs
(“pay attention road works”), but not on mandatory or prohi-
bition signs (see the last signs on Figure 3). Moreover, road
works are temporary by nature, and thus they cannot be asso-
ciated with the white background (corresponding to permanent
signs).

5.2. Formalization of the semantics of traffic signs

We described traffic signs with an ontology (icon ontology),
as well as the associated driving instructions (domain ontology),
and we related them (mapping ontology). This leads to the on-
tology shown on Figure 4. In the domain ontology, we dis-
tinguished two main categories of driving instructions: orders
and information. Orders include obligations and prohibitions.
Information includes information about danger and other infor-
mation. Each instruction is associated to a temporality (perma-
nent or temporary) and a topic, which can be: (a) an action of
the driver (for example turn left, drive at 50 km/h, pass another
vehicle, drive a tractor, etc.), or (b) a possible encounter involv-
ing an element exterior to the driver and his car (for example a
left turn, a hospital, wild animals, etc.). Obviously, orders can
only be associated with actions of the driver (it is a nonsense to
order the driver to encounter something), and information with
encounters (traffic signs are not there for informing the driver
about his own actions). We translated that using two domain
constraints.

5.3. Examples and practical applications

The ontology we presented allows the formalization of the
semantics of traffic signs. By associating the various elements
composing road signs, it is possible to build the existing signs
but also to generate new ones. A first application consists in
determining the consistency and the semantics of these signs.

Figure 5 shows the description of the “prohibition to turn
left” sign. We can note that a given Graphical component (here,
the “left arrow” pictogram) can represent several concepts in the

domain ontology (here the “left turn” encounter and the “turn
left” action). This type of ambiguity is frequent in iconic lan-
guages, because icons are often less precise than a text (or an
ontology).

The previously defined get_meaning(I) function (Algorithm
1) can be used to obtain the set of Domain concepts M, for a
traffic sign I. For example, the “prohibition to turn left” sign
can be formalized as:

I = { Circle, Red border, White background,
Left arrow pictogram }

Then, the function creates D, the tuple of the sets of Domain
concepts represented by each Graphical component in I. Is-
a relations are taken into account, e.g. the Circle Graphical
component can represent the Order Domain concept, but also
its two descendants, Prohibition and Obligation.

D =
(

{ Order, Prohibition, Obligation },
{ Danger, Prohibition, Information of danger },
{ Permanent },
{ Left turn encounter, Turn left action }

)
P is the set of candidate interpretations for I, and corresponds

to the Cartesian product of the sets in D.
P =

{
{ Prohibition, Turn left action, Permanent },
{ Order, Danger, Turn left action, Permanent },
{ Order, Danger, Left turn encounter, Permanent },
{ Obligation, Danger, Turn left action, Permanent },
... (18 elements in P)

}
P′ is the subset of consistent interpretations in P. In the above

example, the third set is inconsistent because an Encounter can-
not be associated with an Order in the domain ontology, and the
last set is inconsistent because an Obligation cannot be associ-
ated with a Danger.

P′ =
{

{ Prohibition, Turn left action, Permanent },
{ Order, Danger, Turn left action, Permanent },
...

}
Finally, the meaning M is the union of all sets in P′.

M = { Prohibition, Order, Danger, Turn left action,
Permanent }

7

Figure 4: Icon ontology for traffic signs (in blue on the left) and the associated domain ontology (in red on the right).

When an inconsistent sign is described, such as the “prohibi-
tion of road works” sign (see Figures 6 and 7), the constraints
that are present in the ontology allow inferring the inconsis-
tency. The inference can be automatized using a reasoner, as
we will show with VCM (section 6).

Traffic signs have often been used as a source of inspiration
for designing other icons or iconic languages, outside the traffic
domain. An example is the “pay attention danger: do not drive”
icon that figures on some French drug boxes (Figure 8). A sec-
ond application of the ontology is to verify that these derivative
icons are complying with the original semantics of road signs.

The semantics obtained with the ontology for the “pay atten-
tion danger: do not drive” icon is not the expected one. In fact,
in traffic signs, the triangle shape represents information about
an upcoming dangerous encounter. Therefore, the meaning of

the icon becomes: “pay attention danger: risk of encountering
cars”!

A third application consists of improving the consistence of
traffic signs. For example, in France, some prohibition signs
have a cross whereas others do not have. Some signs share a
common semantic elements, represented visually in a similar
way but not identically: for instance, the left arrow differs on
the “prohibition to turn left” and the “mandatory turn left” signs
(see the second and the third signs on Figure 3).

8

Figure 5: Representation of “prohibition to turn left” in the traffic sign ontology and the associated semantics.

Figure 6: Representation of the inconsistent sign “prohibition of road works” in the traffic sign ontology and the associated semantics. The three constraints marked
by a star (*) are the ones that allow inferring the inconsistency of the sign. Two representation constraints allow deducing that this sign represents an order dealing
with road works. However, a domain constraint states that orders can be applied only to actions of the driver, and not to encounters such as road work.

9

Prohibition_of_road_works ≡ Icon
u ∀ has_shape.Circle
u ∀ has_border_color.Red
u ∀ has_pictogram.Man_at_work_pictogram

Circle ≡ Shape
u ∀ is_shape_o f .(Icon u ∀ represents.Order)

Red ≡ Color
u ∀ is_border_color_o f .(Icon u ∀ represents.Danger)

Man_at_work_pictogram ≡ Pictogram
u ∀ is_pictogram_o f .(Icon u ∀ represents.(Instruction u ∃ has_topic.Road_works))

Order ≡ Instruction
u ∀ has_topic.Action_of_the_driver
u ∀ is_represented_by.(Icon u ∃ has_shape.Circle)

Danger ≡ Instruction
u ∀ is_represented_by.(Icon u ∃ has_border_color.Red))

Prohibition ≡ Order
u Danger

Road_works ≡ Encounter
u ∀ is_topic_o f .(Instruction u ∀ is_represented_by.

(Icon u ∃ has_pictogram.Man_at_work_pictogram))
Encounter u Action_of_the_driver ≡ ⊥

Figure 7: A sub-part of the TBox related to the “Prohibition of road works” traffic sign, corresponding to the example given in Figure 6. This icon is inconsistent
according to the concepts definitions in the TBox.

Figure 8: The “pay attention danger: do not drive” icon that figures on some French drug boxes and its representation in the traffic sign ontology. This representation
leads to a different meaning for the icon: “pay attention: risk of encountering cars”, because the triangle shape is normally associated with information of an
upcoming dangerous encounter, but not with a prohibition.

10

Figure 9: Creation of VCM icons by the combination of various graphical ele-
ments.

6. Application to the VCM medical iconic language

6.1. The VCM language
The VCM language [5] proposes icons to represent a pa-

tient’s main clinical conditions (including symptoms, disorders
and physiological states, such as age classes or pregnancy),
risk and history of disorders, use of drug and non-drug treat-
ments, laboratory tests and follow-up procedures. It aims to
complement medical texts (and not replace them) by highlight-
ing pieces of text or helping physicians to find the desired
part of the text. VCM includes a set of graphical components
(shapes, pictograms and colors), and uses graphical language to
combine these elements and create icons. A training software
is available online at the following address: http://vcm.univ-
paris13.fr/content/vcm-tutorial.

A VCM icon can be described by a color, a basic shape and a
set of shape modifiers, a central pictogram, a top-right color and
one or two top-right pictograms; Figure 9 illustrates the graph-
ical combinations of these elements and 10 shows examples of
icons. A simple icon can be created by combining:

1. A color indicating the temporal aspect of the icon: red
for current states of the patient, orange for risks of future
states and brown for past states (such as antecedents or
history);

2. A basic shape: a circle for physiological states (i.e. nor-
mal states) or a square for pathological states (disorders or
symptoms);

3. A central white pictogram indicating the anatomico-
functional location (for example, a heart pictogram mean-
ing both heart and cardiac function) or the patient’s char-
acteristic involved (such as pregnancy);

4. Zero, one or several shape modifiers indicating general
types of disorders and morphologies (for example, a small

Disorder of
respiratory

system

Inflammation
of respiratory

tract

Respiratory
insufficiency

Pulmonary
hypertension

Maladie du

système

respiratoire

Inflammation

des voies

respiratoires

Insuffisance

respiratoire

Hypertension

pulmonaire

Disorder of
heart or

pericardia

Vascular
disorder

Vascular
disorder of

stomach

Coronary
disease

Maladie du

cœur ou du

péricarde

Maladie

vasculaire

Maladie

vasculaire de

l’estomac

Maladie

coronaire

Figure 10: Examples of VCM icons with their corresponding English and
French labels.

bacterium for bacterial infection or a downward arrow for
deficiency) or “transversal” anatomical structures that are
present in most organs (such as blood vessels).

Two approaches are employed for representing the morphol-
ogy of symptoms and disorders: if they are specific to a given
anatomo-functional system (such as vomiting, which is spe-
cific to the stomach), a modified central pictogram is used; if
the morphology is general and could apply to several anatomo-
functional systems (such as infections, tumors or functional de-
ficiencies), a shape modifier is used. These two approaches can
be combined, and several shape modifiers can be used together
as long as they do not overlap spatially on the icon.

Icons representing treatments or follow-up procedures are
generated by taking the corresponding icon for the disorder
treated or the risk of disorder followed-up, and by adding a top-
right pictogram in green (treatment) or blue (follow-up proce-
dure). The shape of the top-right pictogram indicates the type
of treatment (for example, drug treatment, oral drug or surgery)
or follow-up procedure (including laboratory tests and medi-
cal imaging). A second top-right pictogram can be added to
represent health professionals or medical documents; for exam-
ple, the cardiologist icon is created by adding the health profes-
sional top-right pictogram to the cardiac disorder icon.

VCM icons can either be used directly, for enriching medical
texts, or a set of icons can be collected and displayed on a spe-
cific graphical user interface called “Mister VCM” [7]. This in-
terface presents a schematized drawing of a Human body, with
the various organ pictograms approximately placed at their real
position (e.g. eye, ear, mouth and brain in the head). These

11

http://vcm.univ-paris13.fr/content/vcm-tutorial
http://vcm.univ-paris13.fr/content/vcm-tutorial

pictograms are grayed by default, and they are replaced by the
VCM icon that includes this pictogram, if any. If several icons
are located at the same pictogram, they are merged into a single,
more general, icon. Examples of “Mister VCM” usage are syn-
thesizing the disorders of a given patient, or the adverse effect
of a given drug.

Due to the highly combinatory design of VCM, the total
number of possible icons is very high; we evaluated it to about
200 million. However, most of these possible icons are incon-
sistent, or consistent but not useful (e.g. they do not correspond
to existing disorders).

6.2. The VCM ontology

The VCM ontology aims at helping with the validation of the
semantics of the VCM language. It was initially developed for
verifying the consistency of icons [12], and then reused for es-
tablishing a preliminary mapping between VCM and a subset of
SNOMED CT (Systematized Nomenclature of Medicine - Clin-
ical Terms) [13]. This section describes the general principles
followed during the design of the ontology in a more detailed
fashion by putting the emphasis on the developing steps, in-
cluding implementation details and technological aspects, and
then presents the developed ontology. We also describe four
applications:

1. The verification of icon consistency,
2. The semi-automatic generation of a mapping between

VCM and SNOMED CT,
3. The automatic generation of a pictogram lexicon,
4. The automatic generation of multilingual labels for icons.

The ontology, as well as the alignment and the programs pre-
sented in this article, are available as Free Software (GNU
LGPL license) and integrated in PyMedTermino2 [33], a mod-
ule for the manipulation of medical terminologies (including
VCM) in the Python programming language.

6.2.1. General principles for the design of the ontology
The first principle that we applied for the design of the on-

tology was to distinguish the icon ontology, with the VCM
icons and Graphical components, from the domain ontology,
with the associated Domain concepts, as described in the gen-
eral method in Section 4. To sum up, the “lung” pictogram is
distinct from the “lung” organ.

The second principle was to employ whenever possible the
is-a subsumption relations instead of other types of relations
such as part-of meronymic relations, because most of existing
tools, including ontology editors and reasoners founded on De-
scription Logics, support subsumption but not meronymy. In-
deed in such reasoners, all the reasoning services are reduced
to inconsistency verification which is founded on subsumption
calculation. More particularly, we chose in our ontology to
model anatomical structures as “adjective + structure” using is-
a relationship rather than only their organ name which could

2https://pypi.python.org/pypi/PyMedTermino

imply a part-of relationship; for instance we say that “a stom-
achal structure is a digestive structure” rather than “the stom-
ach is a part of the digestive tract”. Organs can then be added
as sub-concepts of the anatomical structures: “the stomach is
a stomachal structure”. This transforms meronymic relations
into subsumption relations. It contradicts the “minimal encod-
ing bias” principle, however a similar approach is found in most
medical terminologies, including SNOMED CT [34], and we
adopted it.

The third principle is that all icons describe patient condi-
tions, including the icons for treatments or follow-up proce-
dures. For example the “anti-asthmatic drug treatment” icon
is described as “patient treated by an anti-asthmatic drug”. This
corresponds to the way VCM represents treatments and proce-
dures, by reusing the icon for the disorder being treated or the
risk being monitored.

The three categories of constraints are present:

1. Graphical constraints in the icon ontology, involving
VCM Graphical components. For example, the “tumor”
and “virus” shape modifiers occupy the same place at the
left of the icons, and thus they cannot be used together.

2. Medical domain constraints in the domain ontology, in-
volving anatomical structures, biological functions, mor-
phologies, etc. For example, a tumor is a morphology that
can be applied to anatomical structures, but not to biolog-
ical functions.

3. Representation constraints that link together the Graphical
concepts and the Domain concepts.

During the design of the ontology, a set of about a hundred test
icons was used iteratively, and the HermiT reasoner [35] was
used to test the consistency of the ontology and to verify the
results obtained on the test icon set.

6.2.2. Structure of the VCM ontology
The VCM ontology (Figure 11) has been divided in three

modules. The icon ontology (240 concepts, 21 relations and
2597 axioms) describes VCM Graphical components and icons.
It was automatically generated with Python scripts, from a text
file listing the VCM components. The generated OWL file was
then imported and manually edited into Protégé for adding the
graphical constraints. These constraints restrict the components
of an icon (for example, at most one central pictogram) and
prevent overlapping components (for example, the “virus” and
“tumor” shape modifiers).

The second module, the domain ontology (369 concepts, 18
relations and 828 axioms), describes the Domain concepts rep-
resented by the VCM graphical components: anatomical struc-
tures, biological functions, morphologies, pathological pro-
cesses, patient characteristics (such as age classes) and types
of treatments and follow-up procedures. The ontology includes
basic Domain concepts and combination rules, but it does not
include the entire list of disorders, treatments or procedures
that can be generated by combination (i.e. it relies on post-
coordination rather than on pre-coordination). The next sub-
section will provide more details on the design of the second
module.

12

Figure 11: The main concepts and relations in the VCM ontology. The icon ontology is in blue, the domain ontology in red and the “represents” relations in green.

The concepts of these two ontologies, icon and domain, were
linked by “represents” and “is-represented-by” relations (509
axioms), which constitute the third module, the mapping on-
tology. For example, the “lung” central pictogram is only
present on icons that represents patient conditions involving a
pulmonary structure or the respiratory function. And the pul-
monary structure medical concept is only associated with pa-
tient conditions that are represented by icons with the “lung”
central pictogram. The third module was generated automati-
cally from a text file mapping each Graphical component to the
medical concept(s) it represents, as described in section 4.2.

Each module was stored in a separate OWL/XML file, the
third one importing the two others. The whole VCM ontol-
ogy (i.e. the three modules) includes 609 concepts, 41 relations

and 3934 axioms, defined using the OWL-DL language. It be-
longs to the ALCIQ family of Description Logics (Attribute
Language, Complex concept negation, Role, Inverse property,
Qualified cardinality restriction), for which it has been proved
that the reasoning is decidable [36].

6.2.3. Design of the domain ontology
The domain ontology was modeled manually with the Pro-

tégé editor. It was inspired by the structure of medical ter-
minologies such as ICD10 (International Classification of Dis-
eases, release 10), SNOMED CT and the Semantic Network of
UMLS (Unified Medical Language System) [37]. It was delib-
erately limited to a high level of granularity, corresponding to
the one used by VCM. The original version of the domain on-

13

Figure 12: Representation of ear ossicles in the domain ontology.

tology was further refined during the design of a mapping with
ICD103 and then with SNOMED CT (see section 6.4).

In ontologies and in medical terminologies, the use of multi-
ple inheritance is a long debate. For instance, should ear ossi-
cles be considered as both a bone structure and an ear structure,
or should it be attached to a single parent structure? Although
Guarino [38] argue for limiting is-a overloading, multiple in-
heritance is commonly used for automatic reasoning, e.g. for
finding all bone-related disorders in a patient profile, and it is
used in many multiaxial terminologies such as SNOMED CT.

However, while this representation of ear ossicles is true from
an ontological point of view, it does not correspond to what
clinicians would expect: in fact, disorders are usually classified
by medical specialties, each organ and its disorders being asso-
ciated to a single specialty. In our example, ear ossicle disorders
fall in the ENT (Ear-Nose-Throat) specialty and not in rheuma-
tology. Thus a physician seeing the VCM icon with the bone
central pictogram would not think about an ear ossicle disorder.
Single inheritance is often preferable when classifying disor-
ders for presenting them to clinicians.

This is the reason why we chose to represent a given disorder
by a single VCM icon, unless the disorder involves several, dis-
tinct, organs. We defined two is-a hierarchies in the domain on-
tology (Figure 12): one with multiple inheritance, is-a (multi),
and one with single inheritance, is-a (mono). In the rest of the
paper, is-a (multi) will be used for reasoning on semantics, un-
less explicitly stated otherwise. Is-a (mono) is only used when
generating icons from Domain concepts. For example when
obtaining the central pictogram associated with ear ossicles, we
use is-a (mono) and thus we consider only the central pictogram
inherited from ear structure, but not the one inherited from bone
structure.

6.3. Verification of the icon consistency

6.3.1. Principles
The first application of the VCM ontology was the verifi-

cation of the icons consistency [12]. In fact, some combi-
nations of VCM components lead to inconsistent icons: for
example an icon associating the “tumor” shape modifier and
the “cardiac rhythm” central pictogram means “tumor of car-
diac rhythm”, which is semantically absurd. These inconsis-
tent icons are problematic, especially when users have to cre-
ate icons by themselves, by selecting and combining several
components. Similarly to what we presented on traffic signs

3Not described here because the mapping was purely manual and thus of
low interest from a computer science point of view.

in section 5.3, the VCM ontology allows the verification of the
consistency of icons.

Figure 13 shows the representation of an inconsistent icon
in the ontology. The inconsistency can be inferred from the
constraints modeled in the ontology, as follows:

1. The icon has the “cardiac rhythm” pictogram, and thus it
represents a patient state related to the cardiac rhythm bi-
ological function.

2. The icon has the “tumor” shape modifier, and thus it rep-
resents a patient state involving the tumor pathological al-
teration.

3. Tumor is an anatomical alteration, and therefore it can only
be applied to a patient condition related to an anatomical
structure.

4. Anatomical structure and biological function are disjoint.
Consequently, the icon cannot represent a patient state re-
lated to an anatomical structure.

This reasoning has been reproduced automatically with the Her-
mit reasoner [35], for a single icon (i.e. an individual in the on-
tology) but also for classes of icons that share a common subset
of components (e.g. all icons with a given central pictogram
and a given shape modifier). The inconsistencies inferred from
the reasoner were then evaluated by experts [12]. It has also
been used to detect errors in the VCM training software. The
software contains 521 icons, 25 of them were classified as not
consistent by the ontology. A manual check showed that 14
(out of 25) were errors in the training software (which have
been fixed later), 5 were incomplete icons used as intermediary
results for explaining how to combine the various components
for creating icons, and 6 were actually consistent.

For consistent icons, the get_meaning(I) function can be
used to compute its meaning. Below is an example of the com-
putation of the meaning of the “disorder of respiratory system”
icon (the first in Figure 10).

I = { Red central color, Square, Lung pictogram }
D =

(
{ Current },
{ Pathological alteration },
{ Respiratory structure, Respiration }

)
P =

{
{ Current, Pathological alteration,

Respiratory structure },
{ Current, Pathological alteration, Respiration }

}
P′ = P
M = { Current, Pathological alteration,

Respiratory structure, Respiration }
Note that two interpretations remain in P′, which means that

the icon itself is polysemic (it actually means either disorder of
a respiratory structure or disorder of respiration). Indeed, VCM
has polysemic pictograms but also polysemic icons.

6.3.2. Implementation
The semantic service operations performed by reasoning en-

gines, such as consistency checking, have a huge performance
cost since they require to run the ontology reasoner. In order
to optimize the performances, the results are cached by storing
them in a relational database (using SQLite3).

14

Figure 13: Representation of the “tumor of cardiac rhythm” inconsistent icon in the ontology.

For consistency checking, the inferred results obtained from
the reasoner are cached in the database. For example, for the
“disorder of respiratory system” icon, the following class I can
be created :

I v Icon u ∃has_ f or_shape.S quare
u ∀has_ f or_shape.S quare
u ∃has_ f or_central_color.Red
u ∀has_ f or_central_color.Red
u ∃has_ f or_central_pictogram.Lung_pictogram
u ∀has_ f or_central_pictogram.Lung_pictogram
u ¬∃has_ f or_shape_modi f ier.Thing
u ¬∃has_ f or_top_right_color.Thing
u ¬∃has_ f or_top_right_pictogram.Thing
u ¬∃has_ f or_second_top_right_pictogram.Thing

Then, a reasoner can be used to test whether I is consis-
tent. Due to the very high number of possible icons (about
200 million), the cache does not have one entry per icon. The
cache includes three relational tables: a table listing inconsis-
tent pairs of Graphical components (i.e. any icon including
one of these pairs is inconsistent), a table listing inconsistent(

shape, { shape modifiers,... }, central pictogram
)

tuples (ex-
cluding those having an inconsistent pair), and a table listing
inconsistent icons (excluding those whose inconsistency can be
computed using the two previous tables). The first table con-
tains 3,292 rows, the second 36,550, and the third 1,999,911.

Similarly, for determining the meaning of an icon (the
get_meaning() function), results were cached in the database.
For example, for testing whether the previously defined icon I
means the Lung organ, we can create I′ as follows:

I′ v I u (∃represent.(∃has_ f or_anatomical_structure.Lung))

Then, we use the reasoner to test whether I′ is consistent. If
(and only if) it is, then the lung organ is part of the meaning of
the icon I (i.e. Lung_pictogram ∈ M). For each icon, we tested

all (icon, domain concept) pairs for each possible Domain con-
cept. Pairs were grouped by batches of 10,000 and tested with
the HermiT reasoner.

The entire generation of the cache takes about 3 hours on a
recent computer, and the whole database size is about 120 Mb.

6.4. Alignment of VCM icons with medical terminologies: the
example of SNOMED CT

The use of VCM in medical software requires the alignment
of VCM with the existing medical terminologies, in order to as-
sociate automatically icons with the resources indexed by these
terminologies, such as the disorders coded in patient records.
In this section, we will describe the semi-automatic design of
a mapping between VCM and SNOMED CT. SNOMED CT
is a terminology that covers the various medical concepts, in-
cluding anatomy, clinical conditions and disorders, procedures,
etc. It also defines many relations between these concepts: is-
a subsumption relations, part-of mereologic relations but also
relations between clinical conditions and the anatomical struc-
tures and the morphologies they involve (for example hepatitis
is-located-in liver and has-for-morphology inflammation).

The method for designing the semi-automatic alignment re-
lies on the compositional nature of both SNOMED CT and the
VCM ontology. To perform it, two steps are necessary:

1. The manual alignment of the Domain concepts in the
VCM domain ontology (n=369) with the SNOMED CT
corresponding concepts (mainly anatomical structures and
morphologies),

2. The automatic alignment of SNOMED CT concepts
for clinical conditions to VCM icons, by decomposing
SNOMED CT concepts in anatomical structures and mor-
phologies, then translating these anatomical structures and
morphologies in VCM using the manual alignment pro-
duced at the previous step.

15

Algorithm 2 Algorithm for mapping the SNOMED CT clinical condition s to one (or several) VCM icon(s). Since SNOMED CT
has some ontological feature without being a proper ontology, we formalized it in two part: an ontology (OS NOMEDCT) including
the concepts and the is-a relations between them and a set of triples (TS NOMEDCT) including the other (less formal) relations.
Let us denote :
- OS NOMEDCT the ontological part of SNOMED CT (OS NOMEDCT is limited to concepts related by is-a relations)
- TS NOMEDCT the other relations in SNOMED CT

TS NOMEDCT =
{
(s1, r, s2)

}
where s1 v S NOMEDCT_concept ∈ OS NOMEDCT

and s2 v S NOMEDCT_concept ∈ OS NOMEDCT

and r v S NOMEDCT_role ∈ OS NOMEDCT

- TVCM→S NOMEDCT the manual mapping between Domain concepts of the VCM ontology and SNOMED CT
TVCM→S NOMEDCT =

{
(d, manually_mapped_to , s)

}
with d v Domain_concept ∈ Odomain

and s v S NOMEDCT_concept ∈ OS NOMEDCT

function map_snomedct_to_vcm(s):
Cs =

{
c v S NOMEDCT_concept ∈ OS NOMEDCT | (s, has-for-finding-site, c) ∈ TS NOMEDCT

or (s, has-for-associated-morphology c) ∈ TS NOMEDCT

or (s, has-for-pathological-process, c) ∈ TS NOMEDCT

or (s, has-definitional-manifestation, c) ∈ TS NOMEDCT

or (s, associated-with, c) ∈ TS NOMEDCT

or (s, due-to, c) ∈ TS NOMEDCT

}
C′s =

{
c′ v S NOMEDCT_concept ∈ OS NOMEDCT | there exists c ∈ Cs such that c v c′ ∈ OS NOMEDCT

or (c, part-of, c′) ∈ TS NOMEDCT

}
Ms =

{
d v Domain_Concept ∈ Odomain | there exists c′ ∈ C′s such that (d, manually-mapped-to, c′) ∈ TVCM→S NOMEDCT

}
Is = create_icons(Ms)
return Is

function create_icons(M):
GM =

{
g v Graphical_component ∈ Oicon | there exists d ∈ M such that Omapping |= g v ∃represents.d

}
IM = smallest set { I ⊆ GM | I is satisfiable with regard to Odomain ∪ Omapping ∪ Oicon} such that

⋃
IM = GM

return IM

This method was initially applied to a subset of SNOMED CT,
the CORE problem list (6,173 terms) [13]. We present here the
results for all clinical findings in SNOMED CT (99,626 terms).

6.4.1. Manual alignment between the VCM domain ontology
and SNOMED CT

The Domain concepts of the VCM ontology were manually
aligned with SNOMED CT. SNOMED CT uses multiple in-
heritance. However, we have seen in section 6.2.3 that mul-
tiple inheritance is not desirable when presenting disorders to
clinicians, because they usually classify disorders by medical
specialty, each disorder belonging to a single specialty. For in-
stance, ear ossicle disorders should be represented by a single
icon, with the “ear” central pictogram, and not by two icons,
one with the “bone” pictogram and the other with the “ear”.
Consequently, we used is-a (mono) relationship when generat-
ing icons for SNOMED CT.

We designed a first manual alignment between the domain
ontology and SNOMED CT. But the use of multiple inheritance
in SNOMED CT resulted in several anatomical concepts that
were mapped to several VCM Domain concepts (i.e. SNOMED
CT concepts S 1 and S 2 were respectively manually mapped to
Domain concepts D1 and D2, but then SNOMED CT concepts

S 3, inheriting from both S 1 and S 2, was associated to both D1
and D2 through inheritance).

Therefore, we enriched the Domain ontology with “ambigu-
ous” anatomical structures, i.e. the ones that belong to several
hierarchies in SNOMED CT, such as S 3 above, or ear ossicles
in the previous example. Thanks to Python scripts we devel-
oped, we searched for all SNOMED CT anatomical structures
that would lead to several VCM central pictograms through
multiple inheritance (n=181). Each of these anatomical struc-
tures was added to the domain ontology, with is-a (multi) rela-
tions similar to those in SNOMED CT and is-a (mono) relation
manually determined, according to the medical specialty asso-
ciated with the anatomical structure and the corresponding dis-
orders, and their position in mono-axial terminologies such as
ICD10.

This has led to the creation of new concepts (n=97, fewer
than 181 because some close concepts were grouped together).
The resulting manual alignment involved 1,753 SNOMED CT
concepts and 369 concepts of the VCM domain ontology.

6.4.2. Automatic alignment between SNOMED CT and VCM
Then, clinical condition concepts of SNOMED CT were au-

tomatically aligned with VCM icons, by decomposing them,
following Algorithm 2. Each clinical condition s was decom-

16

posed using the relations in SNOMED CT, yielding the set CS

of the associated anatomical structures, morphologies, etc. Cs is
then enriched using the is-a and part-of relations in SNOMED
CT, to produce a larger set C′s. Next, using the manual mapping,
SNOMED CT concepts in C′s are translated into Domain con-
cepts of the VCM ontology, producing the set Ms. Finally, the
Domain concepts in Ms are translated to Graphical components
which are assembled together, generating one or more VCM
icons. This final step (performed by the create_icons() function
in Algorithm 2) can produce several icons when it is not possi-
ble to represent all the Domain concepts on a single one (e.g. if
two distinct organs are present in Ms, each of them requires a
different central pictogram, and thus two icons are required).

For example, the “Uveitis” SNOMED CT clinical condi-
tion was decomposed into Cs = { Uveal tract anatomical struc-
ture, Inflammation morphology }. “Uveal tract” is a part of
“Entire eye” which is a “Structure of visual system”. Thus,
C′s = Cs∪ { Entire eye anatomical structure, Structure of vi-
sual system }. In the manual mapping, “Structure of visual
system” was mapped to the “Visual structure” Domain concept,
and “Inflammation morphology” to “Inflammation”. Therefore,
Ms = { Visual structure, Inflammation }, leading to the follow-
ing set of Graphical components: GM = { Eye pictogram, Flam-
ing square shape modifier }. The two Graphical components are
then associated to generate the appropriate VCM icon.

The resulting alignment involved the 99,626 clinical findings
in SNOMED CT and 1,957 VCM icons. 77,754 (78.0%) of the
clinical findings were mapped to a single VCM icons, 7,573
(7.6%) were mapped to 2 icons and 517 (0.5%) were mapped
to 3 or more icons. 13,782 (13.8%) of the clinical findings were
mapped to an “empty” VCM icon (i.e. an icon without central
pictogram and shape modifier); the manual analysis of these
icons showed that they mostly included: concepts that were not
considered as clinical conditions in VCM (e.g. “drug therapy
finding”), concepts that qualify clinical findings (e.g. “clinical
stage finding”), very general concepts (e.g. “alive”) or symp-
toms without a proper location (e.g. “erythema”, non localized,
contrary to “erythema of skin”).

6.5. Automatic generation of a pictogram lexicon for VCM

The VCM language documentation includes a lexicon of the
various pictograms. This lexicon is used for learning VCM, but
also serves as a reference for experts. The lexicon is a hierarchi-
cal list, each line associating a pictogram with its label(s) and
its identifier.

The original version of the lexicon (Figure 14) has been writ-
ten manually, in both French and English. This raises several
problems:

1. The lexicon must be manually updated each time the VCM
language is modified, for example with the addition of new
pictograms.

2. The two versions of the lexicon, French and English, must
be kept consistent one with each other.

3. The lexicon still contains ambiguities, for instance some
labels are too generic, and thus for a given organ an expert
may hesitate between two pictograms.

Figure 14: Three excerpts of the manually written VCM pictogram lexicon.
The pictogram identifiers are shown in brackets.

4. The lexicon still lacks some information. Some organs
have no corresponding label in the lexicon; in this case a
more general pictogram must be used. For instance, there
is no “pituitary” pictogram, and the user has to guess that
the “gland” pictogram must be used instead. However,
adding more labels to the lexicon would improve it.

In this section, we propose a method for the automatic gen-
eration of a pictogram lexicon for an iconic language whose
semantics is described by an ontology.

6.5.1. Method for generating the lexicon
The generation of the lexicon was performed in four steps

(Algorithm 3):

1. Extracting P, the whole set of pictograms from the VCM
icon ontology.

2. For each pictogram p, obtaining Mp, the set of the Do-
main concepts represented by p, using the relations in the
mapping ontology.
A pictogram is often associated with several Domain con-
cepts. Indeed, VCM frequently uses the same pictogram
for representing both an organ and its biological func-
tion. The list of Domain concept includes the descen-
dants concepts (children, grandchildren, etc., for example
for the “lung” pictogram, “Pleural structure” is a descen-
dant of “Pulmonary structure”), excepted those that are re-
lated to another, more specific, pictogram (for example,
“Bronchial structure” which is related to the “bronchial”
pictogram, is more specific than the “lung” one).

3. Sorting the concepts in Mp.
When several concepts are associated with a given pic-
togram, the following question arises: in which order the
concepts should be displayed in the lexicon ? We set up
rules to solve this problem, taking into account the nature

17

Algorithm 3 Algorithm for generating the pictogram lexicon. The function has_priority() compares two domain concepts d and d′,
and returns true if d should be placed before d′, and false otherwise. In the function has_priority(), the letters at the end of the lines
refer to the sorting rules described in the text.
P = {p | p v Pictogram ∈ Odomain}

for each p in P :
Mp =

{
d | d v Domain_concept ∈ Odomain and (p, represents, d) ∈ Tmapping

and
(
there does not exist p′, such that p′ v p ∈ Odomain and (p′, represents, d) ∈ Tmapping

)}
Dp = sort the Domain concepts in Mp, using the comparison function has_priority(d, d′)
Generate the lexicon entry for Pictogram p, with the labels associated with the Domain concepts Dp

function has_priority(d, d′) :
if (d v Organ ∈ Odomain) and (Odomain |= d′ u Organ v⊥) then return true (a)
if belongs_to_two_hierarchies(d) and not (belongs_to_two_hierarchies(d′)) then return true (b)
if (d v AnatomicalS tructure ∈ Odomain) and (d′ v BiologicalFunction ∈ Odomain) then return true (c)
if (d v AnatomicalRegion ∈ Odomain) and (Odomain |= d′ v Tissue tCell t Liquid) then return true (d)
if (d v Tissue ∈ Odomain) and (Odomain |= d′ v Cell t Liquid) then return true
if (d v Cell ∈ Odomain) and (d′ v Liquid ∈ Odomain) then return true
if (d′ v d ∈ Odomain) then return true (e)
return false

function belongs_to_two_hierarchies(d):
A = {a | a v AnatomicalS tructure ∈ Odomain and d v a}
if there exists (a, a′), a ∈ A, a′ ∈ A such that Odomain |= a u a′ v⊥ then return true
return false

of the concepts (anatomical structures or biological func-
tions), the scale level (macroscopic or microscopic), the
specificity (general or specific) and the readability of the
corresponding labels (organ names are usually shorter and
more readable than the structure name, for example “lung”
is more readable than “pulmonary structure”). The rules
are the following (in decreasing order of priority):

(a) When an organ is present in the concepts, it comes
first in the lexicon.

(b) Concepts belonging to several anatomical hierar-
chies (such as ear ossicles, which are both in the
“auditive structure” and the “bone structure” hierar-
chies) are typically more specific than those found in
a single hierarchy. Consequently, they are put at the
end, and written in gray.

(c) Anatomical structure concepts are placed before bi-
ological function concepts.

(d) Anatomical structure concepts are ordered from
macroscopic to microscopic. A four-level scale was
considered: anatomical region, tissue, cells, liquid,
as defined in the VCM ontology.

(e) More general concepts were placed before the more
specific ones (according to the is-a relations in the
ontology, for example “diabetes” is placed above “di-
abetes type 2”).

4. Gathering the labels associated with each Domain concept,
and create the lexicon entry. For each concept, the ontol-
ogy included a preferred term and eventually one or more
synonyms or hyponyms. The preferred term is put first,
followed by the “including” mention and the other terms.

The order in which the pictograms appear in the lexicon was
defined manually, following the same anatomical order as in the
original manual lexicon.

6.5.2. Results : the produced lexicon
Figure 15 shows excerpts of the lexicon produced from the

ontology. Compared to the original lexicon (Figure 14), the new
one is incontestably richer.

The alignment of Domain concepts with SNOMED CT (sec-
tion 6.4.1) guarantees the covering of the whole domain, espe-
cially for anatomy. Thus, the generated lexicon has almost no
lacking organs or concepts : all anatomical structures are either
present in the lexicon, or a parent structure is present (for ex-
ample, “pleural structure” was missing in the original lexicon
and is present in the generated one). Moreover, when designing
the mapping with SNOMED CT, we detected the 181 ambigu-
ous medical concepts that were associated with more than one
pictograms. All these ambiguous concepts were automatically
detected, then manually disambiguated and clearly associated
with a single pictogram. As a result, all 181 ambiguous con-
cepts are now present in the lexicon and associated with the
right pictogram.

6.5.3. Evaluation
The new lexicon was evaluated by checking that the entries

from the old and manually written, lexicon were still present in
it. The old lexicon included 499 entries, 389 of them have been
found in the new lexicon. The 110 missing entries were ana-
lyzed manually. We classified them in 7 categories: linguistic
variants (45), e.g. “behavior” vs “behaviour”; synonyms (17)

18

Figure 15: Three excerpts of the VCM pictogram lexicon generated from the
ontology.

often with a better term in the new lexicon, e.g. “extrapyra-
midal troubles” (old) vs “extrapyramidal syndrome” (new); er-
roneous terms in the old lexicon (3), e.g. adnexa (of skin) in-
stead of hairs, orthographic errors in the old lexicon (14), e.g.
“bone narrow” instead of “bone marrow”, term corresponding
to pictograms that have been removed from VCM later (10),

and terms related to obstructions (21), which are represented as
two separate semantic entities in the new lexicon (one for the
obstruction and one for the obstructed organ).

6.6. Automatic generation of multilingual labels for VCM icons

In order to facilitate the learning of the VCM language, the
association of a textual label to each icon is needed, such as the
ones in Figure 10. In this section, we show how to generate
such labels automatically, in several languages.

6.6.1. Method for generating the labels
The labels have been divided in six parts:

1. pre-prefix, which indicates the treatment of the follow-up
procedure involved (e.g. “drug for”), if any,

2. prefix, which indicates the temporality (e.g. “antecedents
of” or “risk of”, or empty string for current state),

3. adjective (adj.), which refers to one or more adjectives
qualifying the patient state (e.g. “vascular”), if any,

4. base, which refers to the noun of the patient state (e.g. dis-
order or hypertension),

5. complement (comp.), which is a grammatical complement
qualifying the patient state (e.g. “of respiratory tract”), if
any,

6. suffix, which refers to an additional complement (e.g.
“with obstruction”), if any.

To enable the automatic generation of labels, we manually cre-
ated a dictionary that maps sets of Domain concepts (from the
VCM domain ontology) to multilingual label parts. The dictio-
nary can be formalized as a set of (key, value) pairs, where the
key is a set of Domain concepts and the value is a triplet includ-
ing the English label part, the French one, and the name of the
part (see excerpts in Algorithm 4).

The dictionary includes label parts of various granularity,
from very general (e.g. “disorder”) to very specific (“pul-
monary hypertension”). Dictionary entries with more specific
subsets (i.e. including a higher number of concepts and/or more
specific ones) are prioritized over more generic entries. For ex-
ample, the entry for {PathologicalAlteration, Hypofunction} is
prioritized over the entry for {PathologicalAlteration}. In ad-
dition, priority rules have been manually edited between entry
with the same granularity level, when needed.

A label is generated from an icon in four steps (Algorithm
5):

1. Computing MI I, the set of the Domain concepts asso-
ciated with the icon in the VCM ontology, using the
get_meaning() previously described function.

2. Selecting EI , the set of dictionary entries matching MI .
The previously defined priority order is taken into account
and, whenever a match is found, the dictionary entry is
added to EI , and the process continues with the remaining
concepts (i.e. the matched concepts are consumed and thus
no longer available for future matches).

3. Selecting VI , the label parts of the matched dictionary en-
tries EI .

19

Algorithm 4 Definition of the dictionary mapping subsets of Domain concepts to multilingual label parts, and an excerpt of the
dictionary content with the label parts required for generating the labels of the icons in Figure 10.

part_names = { pre-prefix, prefix, adj, base, comp, suffix }
dictionary =

{
(k, v), k = {d | d v DomainConcept }, v = (label_partEn, label_partFr, part_name ∈ part_names)

}
dictionary = {
({DomainConcepts,...}, ("English label", "French label", part_name))
({PathologicalAlteration}, ("disorder", "maladie", base)),
({PathologicalAlteration, Hypofunction}, ("insufficiency", "insuffisance", base)),
({PathologicalAlteration, Inflammation}, ("inflammation", "inflammation", base)),
({RespiratoryStructure}, ("of respiratory tract", "des voies respiratoires", comp)),
({RespiratoryFunction}, ("respiratory", "respiratoire", adj)),
({RespiratoryStructure, RespiratoryFunction}, ("of respiratory system", "du système respiratoire", comp)),
({PathologicalAlteration, RespiratoryStructure, Hyperfunction, BloodPressureRegulation},

("pulmonary hypertension", "hypertension pulmonaire", base)),
({CardiacStructure}, ("of heart or pericardia", "du coeur ou du péricarde", comp)),
({CardiacStructure, CardiacFunction}, ("of heart or pericardia", "du coeur ou du péricarde", comp)),
({GastricStructure}, ("of stomach", "de l’estomac", comp)),
({VascularStructure}, ("vascular", "vasculaire", adj)),
({VascularStructure, CardiacStructure}, ("coronary", "coronaire", adj)),
... }

Algorithm 5 Algorithm for generating the multilingual label (LI,En, LI,Fr) for a given icon I.

I is an icon
MI = get_meaning(I)
EI = {∅}

Do while true:
candidate_entries = { (k, v) ∈ dictionary | k ⊆ MI }
if candidate_entries = {∅} : break

best_entry = (k, v) ∈ candidate_entries such that (k, v) is the entry with the highest priority according to the has_priority()
function

Remove all concepts in k from MI

Add best_entry to EI

VI = {v | (k, v) ∈ EI}

LI,En = concatenate(getEn(VI , pre-prefix), getEn(VI , prefix), getEn(VI , adj), getEn(VI , base), getEn(VI , comp), getEn(VI , suffix))
LI,Fr = concatenate(getFr(VI , pre-prefix), getFr(VI , prefix), getFr(VI , base), getFr(VI , adj), getFr(VI , comp), getFr(VI , suffix))

function has_priority((k, v), (k′, v′)):
Take into account manual rules if some apply
if |k| > |k′|: return true
if k′ v k: return true
return false

function get_En(V , part_name):
P = { label_partEn | (label_partEn, label_partFr, part_name’) ∈ V and part_name’ = part_name }
return P

function get_Fr(V , part_name):
P = { label_partFr | (label_partEn, label_partFr, part_name’) ∈ V and part_name’ = part_name }
return P

20

4. Assembling the label parts VI to generate the icon label
in the desired language. In English, the order of the six
parts is: pre-prefix, prefix, adjective, base, complement,
suffix. In French, the order is different: pre-prefix, prefix,
base, adjective, complement, suffix (adjective and base are
reversed). When several parts of the same type are present,
e.g. two adjectives, they are placed in an arbitrary order.

For example, for the “respiratory insufficiency” icon, the Do-
main concepts are MI = { Pathological alteration, Current, Res-
piratory function, Hypofunction }. It matches the following
entries in the dictionary: { Pathological alteration, Hypofunc-
tion } and {Respiratory function} (the { Pathological alter-
ation } subset is also present, but { Pathological alteration, Hy-
pofunction } has a higher priority and it consumes the Patho-
logical alteration concept, which is thus no longer available).
The assembly of the corresponding label parts leads to the “res-
piratory insufficiency” English label.

6.6.2. Results : the produced labels
The automatic label generating system allows the generation

of bilingual English and French labels, for any consistent VCM
icon. For example, labels in Figure 10 have been generated au-
tomatically using this method. The entire dictionary includes
460 bilingual label parts, 257 of them have been manually or-
dered for priority.

6.6.3. Evaluation
In order to evaluate the generated labels, we randomly chose

100 icons from a set of 35,226 icons. This set included the
1,957 icons from the mapping with SNOMED, with various
central colors and exponents (35,226 = 1,957 icons × 3 cen-
tral colors × 6 exponents). The 100 icons and their generated
labels in French and English were reviewed by the two authors,
independently.

Only one label was considered as really problematic (“risk of
arrest related to pregnancy” instead of “risk of miscarriage”).
Two spelling mistakes were also identified (“bénine” instead of
“bénigne”, “goître” instead of “goitre”), as well as two awk-
ward phrasing (“history of...” instead of “past history of...”,
“drug treatment for” instead of “drug treatment of”).

The encountered problems were corrected after the evalua-
tion.

6.7. The VCM iconic server

To facilitate the integration of VCM in medical applications,
we implemented an iconic server for VCM. The server relies
on the HTTP protocol and can be interrogated with either a web
browser or ReST XML services (Representational State Trans-
fer). It has been implemented in Python 3, using PyMedTer-
mino [33], which provides access to medical terminologies but
also semantically-enabled set operations.

We associated a unique ID with each icon, the ID being the
concatenation of the codes corresponding to its Graphical com-
ponents. Typical queries to the server are:

• Obtain the SVG image file from an icon ID (including con-
sistency, meaning i.e. set of associated Domain concepts,
and English and French labels, located in metadata of the
SVG file).

• Obtain the icon ID(s) for a given SNOMED CT concept.

• Merge several icons into a more generic one.

• Generate VCM-based user interface, such as “Mister
VCM”, from a set of icons.

7. Discussion

In this paper, we described a method for formalizing the se-
mantics of an iconic language, using a formal ontology that de-
scribes the icons (or signs) of the language and their syntax,
the object represented by the icons and their properties, and
the “represents/is-represented-by” relations that exist between
them. We have shown that this method is generic enough to
be applied to two different iconic languages, the traffic signs
and the VCM medical iconic language. We also showed the in-
terest of this formalization through four practical applications:
the verification of the icon consistency, the alignment of the
icons with existing terminological resources, the automatic gen-
eration of a pictogram lexicon and the automatic generation of
multilingual labels for the icons. These applications could have
been achieved using knowledge representations specific to each
application (for instance, grammatical rules for verifying the
icon syntax), however the ontology we designed allowed the
implementation of all applications from a single, unique knowl-
edge source, which is easier to maintain.

7.1. Grammar vs. semantics

In related works (section 2), we have shown that several ap-
proaches proposed for formalizing the semantics of graphical
languages were actually based on grammatical formalisms. For
example, we could have determined the consistency of traffic
signs or VCM icons using a formal grammar, such as the fol-
lowing one:

<sign> ::= <prohibition sign> | <obligation sign>
| <danger information sign>
| <other information sign>

<danger information sign> ::= red triangle with an <encounter>
inside
<prohibition sign> ::= red circle with an <action> inside
<encounter> ::= left turn, road works,...
<action> ::= left turn, drive above 50 km/h,...

However, this formalization integrates heterogeneous ele-
ments without distinguishing them: graphical elements (red cir-
cle) and non-graphical ones (road works) are mixed. Moreover,
it does not separate the represented object from its graphical
representation, nor the grammar from the semantics. Actually,
the “road works are prohibited” traffic sign or the “tumor of
cardiac rhythm” VCM icon should be perfectly correct from a

21

grammatical point of view, despite they are absurd and inconsis-
tent from a semantic point of view. However, when using a for-
mal grammar (such as the one presented above), these icons are
detected as grammatically incorrect. Therefore, using a gram-
mar for expressing the semantics seemed inappropriate to us. In
addition, the semantics often relies on hierarchical inheritance
relations (is-a), and thus an ontology seemed more adapted.

Moreover, the four applications we presented could not have
been implemented if we did not express the semantics indepen-
dently from the grammar. For example, it would have been dif-
ficult to generate a pictogram lexicon from a grammar in which
pictograms and medical concepts would have been mixed.

7.2. Polysemy

Polysemy is one of the major difficulty when dealing with
the semantics of iconic languages. Indeed iconic languages are
often highly polysemic because icons usually do not aim at be-
ing as precise as text. The two iconic languages we worked on
in this study have polysemy, but not at the same level. Traf-
fic signs have polysemic pictograms, but not polysemic icons
(each traffic sign has a single well-defined meaning). On the
contrary, VCM has both polysemic pictograms (e.g. most or-
gan pictograms are polysemic and mean both the organ and
the associated function) and polysemic icons (e.g. icons that
can represent several distinct disorders, usually closely related
ones). The ontology-based methods (expressed in Description
Logics) and algorithms we described were able to cope with
both forms of polysemy. In the literature, ontologies have al-
ready been proposed for dealing with polysemy in the medical
domain [39].

7.3. Comparison with the literature

The method we presented here for formalizing the semantics
of an iconic language (section 4) shares some similarities with
some of the approaches described in the state of the art (section
2), more precisely (a) semiotic studies [15] for the decompo-
sition of icons in graphical components (pictograms, geometri-
cal shapes, colors), (b) abstract visual syntaxes [11, 27] for the
use of a non-graphical syntax, more abstract and formal than
graphics, and (c) the works of Haarslev [28] for the use of a
formal ontology relying on description logics (DLs). However,
contrary to Haarslev, we tried to represent in the ontology the
syntax of the language but also its semantics.

7.4. Discussion about the semantic-powered applications

The first application of the ontology was the verification
of icon consistency. In the literature, consistency checking
has been widely studied for auditing medical terminologies
[40], and tracking inconsistent terms. Two categories of meth-
ods are distinguished for searching for inconsistent terms [41]:
linguistic-based methods searching for lexical inconsistency,
and ontological methods searching for inconsistent classifica-
tions. Both methods can rely either on extrinsic knowledge,
i.e. the terminology is compared to another source of knowl-
edge such as another terminology, or on intrinsic knowledge,
i.e. the terminology consistency is checked with regards to

knowledge inferred from the terminology itself, either manu-
ally or automatically. However, linguistic methods could not
be applied to iconic languages. Ontological methods typically
consist of defining formal constraints and then searching for
terms or concepts violating these restrictions [41]. Such meth-
ods have been applied to the GALEN project [42] and to vari-
ous medical terminologies including the Medical Subject Head-
ing (MeSH) [43], the Standardized Nomenclature of Medicine
Clinical terms (SNOMED CT) [44, 45], the International Clas-
sification of Diseases 10th release (ICD10) [46], the Founda-
tional Model of Anatomy (FMA) [47, 48], the National Can-
cer Institute (NCI) thesaurus [49] and the Unified Medical Lan-
guage System (UMLS) [50, 51].

The second application is the alignment of VCM icons with
SNOMED CT, a reference terminological resource in medicine.
This alignment has been done semi-automatically thanks to the
relations present in both the VCM ontology and SNOMED CT.
In the literature, three methods are generally considered for es-
tablishing mapping between medical terminologies [52]: (1)
chaining several existent mappings, (2) using lexical methods
for searching identical or similar terms, (3) designing the map-
ping manually, and (4) using mapping ontology alignment or
matching methods. This fourth approach can only be used when
the two mapped terminologies are structured and described us-
ing Description Logics (DLs), and thus it has rarely been used
on medical terminologies. Our work is one of the rare exam-
ples of this semantic-powered approach. This semi-automatic
approach is also interesting for updating the mapping when
new pictograms are added to VCM or when a new version of
SNOMED CT is available (twice a year).

However, we did not manage yet to reproduce a similar ap-
proach for less structured terminologies such as ICD10. Poorly
structured resources would probably still require a manual
alignment.

The third application is the automatic generation of a pic-
togram lexicon from the iconic language’s ontology. This au-
tomatically generated lexicon is clearly richer than a manually
written lexicon. In addition, the alignment of the concepts of
the ontology with external resources such as SNOMED CT en-
sure that there is no missing information or ambiguity in the lex-
icon. Moreover, the lexicon is bilingual (English and French),
and it can be automatically updated when the ontology is mod-
ified.

An important difficulty we encountered when working on
the generation of the lexicon was relative to the order of the
items shown in the lexicon. In fact, the ontology does not de-
fine any order between its concepts. For example an ontology
can define the mouth, the esophagus and the stomach concepts
as being three digestive structures. However, the three concepts
are not ordered even if there is actually an intuitive order be-
tween them. We proposed some rules for ordering the various
concepts and labels listed for a given pictogram; these rules
considered several criteria: the scale level, the specificity and
the nature of the concept, and the readability of the labels. On
the contrary, the order of the pictograms in the lexicon was de-
termined manually. This order is important because a typical
user expects the pictograms of a given system (e.g. digestive

22

or cardiovascular systems) to be grouped together. Moreover,
for some systems like digestive systems, there is an intuitive or-
der for presenting the organ or the function, e.g. following the
course of the alimentary bolus (mouth, esophagus, stomach, in-
testine, anus). More detailed ontologies of anatomy, such as
FMA (Foundational Model of Anatomy) [53, 54], include con-
necting relations between organs (e.g. the mouth is-connected-
to the esophagus). However, even with those relations, it is not
possible to determine the exact order for presenting the organs
(i.e. from mouth to anus or from anus to mouth ?).

In the literature, most of the works relative to ontologies and
lexicons aimed at creating an ontology from an existent lexi-
con, which is the opposite of what we described here: Natural
Language Generation (NGL) from an ontology [55]. However,
the generation of a lexicon from an ontology has already been
proposed [56], in particular in well-defined technical domains.
The problem we encountered for ordering the items in the lex-
icon is similar to the one encountered by the tools generating
descriptions in natural language for the concepts of an ontol-
ogy, such as NaturalOWL [57, 58]. These tools produce a tex-
tual definition from a concept and its relations. The order in
which the relations are considered and appear in the text is typ-
ically configured manually by the user, and not inferred from
the ontology.

The fourth application is the automatic generation of multi-
lingual labels for each icon. We applied this method to English
and French, and our method could probably work for most occi-
dental languages. However, the automatic generation of labels
in languages more distant (such as Arabic or Chinese) or with
different fundamental structures (for example declensional lan-
guages, such as German) could raise new research problems.

7.5. Perspectives
A first perspective is the development of additional semantic-

powered applications. An example would be the automatic gen-
eration of a diagram explaining the meaning of an icon by de-
composing it (in the spirit of Figure 1). Such diagrams could
help the learning of iconic languages, such as VCM. Another
example would be the automatic generation of icons for a pic-
torial retrieval system [59], based on semantics.

A second perspective is the application of our formalization
method to other iconic languages. VCM is one of the most
complex domain-specific iconic languages. However, it is also
very structured, and thus less-structured languages may raise
new problems.

Another type of iconic languages is “universal” general
iconic languages, usually targeting either foreigners and
tourists, or persons with impaired language cerebral center.
These persons are unable to use natural languages but they man-
age to use graphical languages. Examples of such graphical lan-
guages are VIL [60], Miracle [61], and Blissymbolics. These
languages use icons, but also iconic sentences which organize
several icons according to a specific grammar. Our method
could help to describe their semantics, but it needs to be ex-
tended for formalizing iconic sentences.

A third perspective is the use of the method beyond iconic
languages. For example, the method we described for build-

ing semi-automatic mapping between an iconic language and a
terminology could easily be generalized to the mapping from a
terminology to another one.

8. Conclusion

In conclusion, we described a generic method for the formal-
ization of the semantics of iconic languages. The method has
been applied to traffic signs and to VCM, an iconic language
for medical concepts such as disorders or treatments. The for-
malization clarified the syntax, the grammar and the semantics
of the language. It also permitted various semantic-based ap-
plications. The formalization of the semantics could facilitate
the conception of new iconic languages, improve the consis-
tency and the quality of these languages, ease their learning
through the automatic generation of multilingual high-quality
lexicons and labels, and finally facilitate their use in practice by
helping to establish mapping with existing termino-ontological
resources of the application domain.

Acknowledgments

This work was partly supported by the French national re-
search agency (ANR, Agence Nationale de la Recherche) dur-
ing the L3IM [grant number ANR-08-TECS-007] and SiFaDo
[grant number ANR-11-TECS-0014] research projects.

References

[1] Dreyfuss H, Symbol sourcebook: An Authoritative Guide to International
Graphic Symbols, John Wiley and sons, 1984.

[2] X. Ma, J. P. Cahier, Graphically structured icons for knowledge tagging,
Journal of Information Science 40 (6) (2014) 779–795.

[3] J. Vigneron, I. Gindre, M. Daouphars, P. Monfort, S. Georget, B. Demoré,
E. Chenot, V. Noirez, N. Commun, F. Laurelli, A. Perrin, M. Lux, M. A.
Hoffman, M. Hoffman, Stabilis 3: a European database on the stability
and compatibility of injectable drugs, European Journal of Hospital Phar-
macy Practice 12 (6) (2006) 77–78.

[4] V. J. Henry, A. E. Bandrowski, A. S. Pepin, B. J. Gonzalez, A. Des-
feux, OMICtools: an informative directory for multi-omic data analysis,
Database : the journal of biological databases and curation 2014.

[5] J. B. Lamy, C. Duclos, A. Bar-Hen, P. Ouvrard, A. Venot, An iconic lan-
guage for the graphical representation of medical concepts, BMC Medical
Informatics and Decision Making 8 (2008) 16.

[6] J. W. Ely, J. A. Osheroff, M. H. Ebell, M. L. Chambliss, D. C. Vinson, J. J.
Stevermer, E. A. Pifer, Obstacles to answering doctors’ questions about
patient care with evidence: qualitative study, BMJ 324 (7339) (2002) 710.

[7] J. B. Lamy, A. Venot, A. Bar-Hen, P. Ouvrard, C. Duclos, Design of
a graphical and interactive interface for facilitating access to drug con-
traindications, cautions for use, interactions and adverse effects, BMC
Medical Informatics and Decision Making 8 (2008) 21.

[8] N. Griffon, G. Kerdelhué, S. Hamek, S. Hassler, C. Boog, J. B. Lamy,
C. Duclos, A. Venot, S. J. Darmoni, Design and usability study of an
iconic user interface to ease information retrieval of medical guidelines, J
Am Med Inform Assoc 21 (e2) (2014) e270–7.

[9] S. Pereira, S. Hassler, S. Hamek, C. Boog, N. Leroy, M. C. Beuscart-
Zéphir, M. Favre, A. Venot, C. Duclos, J. B. Lamy, Improving access to
clinical practice guidelines with an interactive graphical interface using
an iconic language, BMC medical informatics and decision making 14 (1)
(2014) 77.

[10] C. Simon, S. Hassler, M. C. Beuscart-Zephir, M. Favre, A. Venot, C. Duc-
los, J. B. Lamy, Using an iconic language to improve access to electronic
medical records in general medicine, Stud Health Technol Inform 205
(2014) 333–7.

23

[11] Erwig M, Semantics of Visual Languages (1997).
[12] J. B. Lamy, L. F. Soualmia, G. Kerdelhué, A. Venot, C. Duclos, Validating

the semantics of a medical iconic language using ontological reasoning, J
Biomed Inform 46 (1) (2013) 56–67.

[13] J. B. Lamy, R. Tsopra, A. Venot, C. Duclos, A Semi-automatic Semantic
Method for Mapping SNOMED CT Concepts to VCM Icons, Stud Health
Technol Inform 192 (2013) 42–6.

[14] Meunier JG, La structure générique des systèmes sémiotiques, Recherche
sémiotique / Semiotic inquiries (RSSI) 8 (1988) 75–107.

[15] Meunier JG, The categorial structure of iconic languages, The-
ory&Psychology 8 (6) (1998) 805–825.

[16] H. Huang, H. H. Lai, Factors influencing the usability of icons in the LCD
touchscreen, Displays 29 (4) (2008) 339–344.

[17] S. Ghayas, S. Sulaiman, M. Khan, J. Jaafar, The effects of icon charac-
teristics on users’ perception, in: International Visual Informatics Confer-
ence (IVIC2013), Lecture Notes in Computer Science, Vol. 8237, 2013,
pp. 652–663.

[18] L. Kascak, C. B. Rébola, R. Braunstein, J. A. Sanford, Icon design for
user interface of remote patient monitoring mobile devices, in: Proceed-
ings of the 31st ACM international conference on design of communica-
tion, Vol. 77-84, 2013.

[19] Y. B. Salman, H. I. Cheng, P. E. Patterson, Icon and user interface design
for emergency medical information systems: a case study, Int J Med Inf
81 (1) (2012) 29–35.

[20] C. Nakamura, Q. Zeng-Treitler, A taxonomy of representation strate-
gies in iconic communication, Int. J. Human-Computer Studies 70 (2012)
(2012) 535–551.

[21] X. Ma, N. Matta, J. P. Cahier, C. Qin, Y. Cheng, From action icon to
knowledge icon: Objective-oriented icon taxonomy in computer science,
Displays 39 (2015) 68–79.

[22] S. C. Huang, R. G. Bias, D. Schnyer, How are icons processed by the
brain? Neuroimaging measures of four types of visual stimuli used in
information systems, Journal of the association for information science
and technology 66 (4) (2015) 702–720.

[23] Marriott K, Constraint multiset grammars, in: Proceedings of IEEE sym-
posium on Visual Languages, 1994.

[24] G. Costagliola, A. De Lucia, S. Orefice, G. Tortora, A parsing methodol-
ogy for the implementation of visual systems, in: IEEE Transactions on
Software Engineering, Vol. 23, 1997, pp. 777–799.

[25] A. Zolotas, D. S. Kolovos, N. Matragkas, R. F. Paige, Assigning se-
mantics to graphical concrete syntaxes, in: Extreme modeling workshop
(XM2014), 2014.

[26] V. Rajarajan, C. L. Kiernan, S. P. MacLeod, S. E. Oberst, Pluggable nota-
tions and semantics for visual modeling elements (US Patent 7,320,120)
(2008).

[27] S. Ellner, W. Taha, The Semantics of Graphical Languages, in: Pro-
ceedings of the ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, 2007.

[28] Haarslev V, Visual Language Theory, Vol. 261-292, Springer, New York,
1998, Ch. A fully formalized theory for describing visual notations.

[29] Baar T, Correctly defined concrete syntax for visual modeling languages,
in: Model driven engineering languages and systems, Lecture Notes in
Computer Science, Vol. 4199, Springer, Berlin, Heidelberg, 2006, pp.
111–125.

[30] G. Costagliola, M. De Rosa, V. Fuccella, Extending local context-based
specifications of visual languages, Journal of Visual Languages and Com-
puting 31 (2015) 184–195.

[31] N. C. Kuicheu, N. Wang, G. N. Fanzou Tchuissang, F. Siewe, D. Xu,
Description logic based icons semantics: An ontology for icons, in: Inter-
national Conference on Signal Processing (ICSP 2012), Vol. 1260-1263,
Beijing, China, 2012.

[32] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. L. Patel-
Schneider, The description logic handbook: theory, implementation and
applications, Cambridge University Press, 2007.

[33] J. B. Lamy, A. Venot, C. Duclos, PyMedTermino: an open-source generic
API for advanced terminology services, Stud Health Technol Inform 210
(2015) 924–928.

[34] Cornet R, Definitions and qualifiers in SNOMED CT, Methods Inf Med
48 (2) (2009) 178–183.

[35] B. Motik, R. Shearer, I. Horrocks, Hypertableau reasoning for description
logics, Journal of Artificial Intelligence Research 36 (2009) 165–228.

[36] I. Horrocks, U. Sattler, Decidability of SHIQ with complex role inclusion
axioms, Artificial Intelligence 160 (2003) 2004.

[37] V. Kashyap, A. Borgida, Representing the UMLS Semantic Network in
OWL, in: Proceedings of ISWC 2003 (International Semantic Web Con-
ference), Vol. 1-16, 2003.

[38] Guarino N, Some ontological principles for designing upper level lexi-
cal resources, in: Proceedings of the First International Conference on
Language Resources and Evaluation (LREC), 1998.

[39] D. M. Pisanelli, A. Gangemi, M. Battaglia, C. Catenacci, Coping with
medical polysemy in the semantic web: the role of ontologies, Stud
Health Technol Inform 107 (2004) 416–419.

[40] J. Geller, Y. Perl, M. Halper, R. Cornet, Special issue on auditing of ter-
minologies, J Biomed Inform 42 (3) (2009) 407–411.

[41] X. Zhu, J. W. Fan, D. M. Baorto, C. Weng, J. J. Cimino, A review of
auditing methods applied to the content of controlled biomedical termi-
nologies, J Biomed Inform 42 (3) (2009) 413–425.

[42] A. L. Rector, S. Bechhofer, C. A. Goble, I. Horrocks, W. A. Nowlan,
W. D. Solomon, The Grail concept modelling language for medical ter-
minology, Artif Intell Med 9 (1997) 139–171.

[43] L. F. Soualmia, C. Golbreich, S. J. Darmoni, Representing the MeSH in
OWL: towards a semi-automatic migration, in: Proceedings of the In-
ternational Workshop on Formal Biomedical Knowledge Representation
(KRMeD), Whistler, Canada, 2004.

[44] G. Héja, G. Surján, P. Varga, Ontological analysis of SNOMED CT, BMC
Medical Informatics and Decision Making 8 (Suppl 1) (2008) –8.

[45] Y. Wang, M. Halper, D. Wei, H. Gu, Y. Perl, J. Xu, G. Elhanan, Y. Chen,
K. A. Spackman, J. T. Case, G. Hripcsak, Auditing complex concepts
of SNOMED using a refined hierarchical abstraction network, J Biomed
Inform 45 (1) (2012) 1–14.

[46] G. Héja, G. Surján, G. Lukácsy, P. Pallinger, M. Gergely, GALEN based
formal representation of ICD10, Int J Med Inf 76 (2-3) (2007) 118–123.

[47] R. Cornet, A. Abu-Hanna, Two DL-based methods for auditing medical
terminological systems, in: Proc AMIA Symp, Vol. 166-170, 2005.

[48] H. H. Gu, D. Wei, J. L. Mejino, G. Elhanan, Relationship auditing of the
FMA ontology, J Biomed Inform 42 (3) (2009) 550–557.

[49] F. Mougin, O. Bodenreider, Auditing the NCI thesaurus with semantic
web technologies, in: Proc AMIA Symp, Vol. 500-504, 2008.

[50] H. Erdogan, E. Erdem, O. Bodenreider, Exploiting UMLS semantics
for checking semantic consistency among UMLS concepts, Stud Health
Technol Inform 160 (Pt 1) (2010) 749–53.

[51] M. Halper, C. P. Morrey, Y. Chen, G. Elhanan, G. Hripcsak, Y. Perl, Au-
diting hierarchical cycles to locate other inconsistencies in the UMLS,
AMIA Annual Symposium proceedings 2011 (2011) 529–36.

[52] H. Saitwal, D. Qing, S. Jones, E. V. Bernstam, C. G. Chute, T. R. Johnson,
Cross-terminology mapping challenges: a demonstration using medica-
tion terminological systems, J Biomed Inform 45 (4) (2012) 613–25.

[53] C. Rosse, V. Mejino JL, A reference ontology for biomedical informatics:
the Foundational Model of Anatomy, J Biomed Inform 36 (2003) 478–
500.

[54] L. T. Detwiler, J. L. V. Mejino, J. F. Brinkley, From frames to OWL2:
Converting the Foundational Model of Anatomy, Artif Intell Med 69
(2016) 12–21.

[55] N. Bouayad-Agha, G. Casamayor, L. Wanner, Natural language gener-
ation in the context of the Semantic Web, Semantic Web 5 (6) (2014)
493–513.

[56] Hirst G, Handbook on ontologies, Springer, 2009, Ch. Ontology and the
Lexicon.

[57] S. Konstantopoulos, V. Karkaletsis, D. Vogiatzis, D. Bilidas, Language
Technology for Cultural Heritage, Vol. 115-132, Springer Berlin Heidel-
berg, 2011, Ch. Authoring semantic and linguistic knowledge for the dy-
namic generation of personalized descriptions.

[58] I. Androutsopoulos, G. Lampouras, D. Galanis, Generating natural lan-
guage descriptions from OWL ontologies: the NaturalOWL system, Jour-
nal of Artificial Intelligence Research 48 (2013) 671–715.

[59] S. Y. Sung, T. Hu, Iconic pictorial retrieval using multiple attributes and
spatial relationships, Knowledge-Based Systems 19 (2006) 687–695.

[60] Leemans NE M, VIL: A Visual Inter Lingua, Ph.D. thesis (2001).
[61] H. Maurer, R. Stubenrauch, D. G. Camhy, Foundations of MIRACLE:

Multimedia Information Repository, A Computer-supported Language
Effort, Journal of Universal Computer Science 9 (4) (2003) 309–348.

24

	Introduction
	Related works on the formalization of graphical languages
	Description Logics (DLs)
	Method for the formalization of the semantics of iconic languages
	General principles
	Managing the mapping in the mapping ontology
	Formal definition of the icon semantics

	Application to traffic signs
	Traffic signs
	Formalization of the semantics of traffic signs
	Examples and practical applications

	Application to the VCM medical iconic language
	The VCM language
	The VCM ontology
	General principles for the design of the ontology
	Structure of the VCM ontology
	Design of the domain ontology

	Verification of the icon consistency
	Principles
	Implementation

	Alignment of VCM icons with medical terminologies: the example of SNOMED CT
	Manual alignment between the VCM domain ontology and SNOMED CT
	Automatic alignment between SNOMED CT and VCM

	Automatic generation of a pictogram lexicon for VCM
	Method for generating the lexicon
	Results : the produced lexicon
	Evaluation

	Automatic generation of multilingual labels for VCM icons
	Method for generating the labels
	Results : the produced labels
	Evaluation

	The VCM iconic server

	Discussion
	Grammar vs. semantics
	Polysemy
	Comparison with the literature
	Discussion about the semantic-powered applications
	Perspectives

	Conclusion

