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Introduction

& Breast cancer
& One of the most common types of cancer that affects women in Europe
& High survival rate at 10 years

@l Artificial Intelligence supports
the diagnostic of breast cancer

& Deep learning
& SVM
¢ Image analysis
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Source: MedicalXPress
& But supporting the therapy is more complex !!!

¢ Many treatments exist, with 4 main categories:

@ surgery, chemotherapy, endocrine therapy and radiotherapy
& Many clinical data need to be considered

@ Clinical data are often not structured, contrary to medical images
¢ Difficult to produce a learning base

© For a patient, the best treatment is never known



Introduction

The problem of explanations

¢ Physicians need to understand the rationale of a recommendation
In order to follow it

¢ For diagnosis systems,
an annotated image can
make a decent explanation

Source: MIT

¢ But for therapy, explanations are much more difficult to produce
© And time is limited (3 minutes per patient in breast cancer unit)

@ => Explainable Artificial Intelligence (XAl)



Introduction

The DESIREE European H2020 project

¢ Decision Support and Information Management d .
System for Breast Cancer eNliree

¢ Objectives:
@ To help clinicians with the management of patient data and images
@ To support primary breast cancer therapeutical decision

¢ A web-based platform with 3 decision-support modules:
@ Clinical practice guidelines implementation using formal ontologies
@ Statistical machine learning through rule-learning
© Case-based reasoning (CBR) €——



Introduction

@ Case-based Reasoning (CBR)

¢ A form of analogical reasoning
@ No learning: CBR does not try to learn a model
© Typical example: kNN (k nearest neighbor)

9 3 steps: New

case
© Retrieve similar older cases from a database,
iIncluding cases with known solutions

© Adapt their solutions to the new case Cg;gs
© Retain the new case in the case database J ‘

i @
)

C New
dat;l;saese Cas€
9 In the therapeutic context ol
©® A case = a patient New
@ A solution = a treatment Case 5




Introduction

@ Case-based Reasoning (CBR)
¢ Particularly interesting for producing explanations (XAl)

¢ The old cases can be used as explanations
©® This way of reasoning is familiar to physicians

@ => Explanations may consist is the presentation of 2-50 similar cases
¢ But 2-50 breast cancer patient records represent a huge volume of data!

¢ A solution is the use of information visualization for displaying the cases



An automaticl/visual approach to CBR

1) automatic classification

automatic
case D D D
retrieval similar

3) visual
cases

explanation | 4YEY

class
 E
query L S

visual interface

@ Previous works 2) visual reasoning
¢ An be automatic or visual
_ : _ . T | - fE
@ Translate visually the CBR reasoning a) L
. . . - "o [ smnan §
¢ Displays case similarities " e
(new case vs old ones) Quantitative approach  Qualitative approach
Displays similarity Displays shared
¢ Qua”tative Sim”arity measures characteristics

¢ Quantitative similarity

[Lamy JB et al. Explainable artificial intelligence for breast cancer: a visual
case-based reasoning approach. Artificial Intelligence in Medicine 2019]



Architecture

Case database is a relational database

HL7 FHIR standard is used for communication
with the clinical platform

Cases are retrieved using jColibri

CBR visual analytics

Clinical CBR engine visualize similarity

platform extracts similar cases
/ . B = g
I JColibri j Polar MDS scatter plot
Rainbow boxes
ﬁ K j
I

Case database




Distance
mautrix

Cases are retrieved
using jColibri

¢ Computes a
distance matrix
between cases

Query | Similar | Similar | Similar | Similar | Similar | Similar | Similar
#1 #2 #3 #4 #5 #6 #7
dim#1 | val #1 val #1b val #1c | val #1 val #1d val #1e val #1f | val #1g
dm#2 | val#2a | val#2a | val#2b | val#2a | val#2d val #2e | val #2b | val #2¢g
dm#3 | val #3 val #3 val #3 val #3c¢ val #3d val #3e val #3f | val #3¢g
dm#4 | val #4 val #4 val #4 val #4c val #4d val #4e val #4 val #4g
dim #5 | val #5a val #5b val #5¢ val #5 val #5 val #5e val #5f | val #5¢g
dim#6 | val #6 val #6a val #6b val #6¢ val #6d val #6e val #6f | val #6g
Query [Similar | Similar [ Similar | Similar | Similar | Similar | Similar
#1 #2 #3 #4 #5 #6 #7

Query| -~

Similar| 20 .

#1

Similar| 2.1 1.5 -

#2

Similar| 2.0 5.0 4.8 -

#3

Similar| 1.9 5.1 4.9 1.1 -

#4

Similar| 45 5.2 5.2 6.0 6.1 -

#5

Similar| 42 1.7 1.8 5.5 5.6 5.5 -

#6

Similar| 2.0 5.3 5.1 5.4 5.3 3.1 52 |-

#7




Visualization of quantitative similarities

New patient

Distance = dissimilarity

Similar patients
treated by
radiotherapy

@ Scatter plot : 2D projection of the distance
matrix

¢ 1 dot = 1 patient
& Colors = classes
& Target facilitates distance evaluation

@ Various methods for scatter plot

¢ MDS 5multi-Dimensional Scaling), PCA,
tSNE,...

& Here, 2 types of distances:

& A - Between the new patient and a similar
patient (more important!)

& B - Between two similar patients

@ => we used polar MDS

& Preserve distances of type A to the detriment of

those of type B
yP 10



Polar MDS scatter plot

¢ Origin O = new patient

@ Each similar case S is defined by o ©
their polar coordinates (L, 0)

¢ L is already known:
It IS the distance between S and O

¢ 0 is determined by solving an optimization problem:
@ Find the best values 0 that minimize the stress function:

2-dimensional distance
/in the scatter plot
2

(depend on 6 values)

- d:
=> no information 2<l<] U\

loss for the distances
involving the new
patient

Real n-dimensional distance

Number 1 is the new patient

11



AFB metaheuristic

Artificial Feeding Birds (AFB)
[Lamy JB. Artificial Feeding Birds (AFB): a new metaheuristic inspired by the behavior
of pigeons, Advances in nature-inspired computing and applications 2019, Springer]

...to join the
. ...to return to position of
Flies.. a memorized another
.toland at a
position r|ch bird (
new random
in food
position (2)

?f?f ¥ & «&

Walks to a cIose
position (

> Simple
> Performant
> Generic

Can solve any optimisation problem defined by a triplet of functions ( cost(), fly(), walk() )



Visualization of qualitative similarities

@ Rainbow boxes

@® A recent set visualization
technique

¢ Elements are patients

& Sets are shared characteristics
@ set of patients with “age > 60”

¢ Only the two major therapeutic
decisions are kept

¢ Numeric values are discretized
using the Minimum Description
Length Principle (MDLP)

¢ Only the boxes with the highest
Mutual Information (MI) are kept

1) Query | Similar | Similar | Similar | Similar | Similar | Similar | Similar
#1 #2 #3 #4 #5 #6 #7

dm#1 | val #1 val #1b val #1c val #1 val #1d val #1e val #1f | val #1g
dim#2 [ val#2a | val#2a | val#2b | val#2a | val#2d val #2e | val #2b | val #2g
dim#3 | val #3 val #3 val #3 val #3c val #3d val #3e val #3f | val #3g
dim#4 | val#4 val #4 val #4 val#4c | val#4d | val#de | val#4 | val #4g
dim#5 | val #5a val #5b val #5¢ val #5 val #5 val #5e val #5f | val #5g
dim #6 | val #6 val #6a val #6b | val #6¢c val #6d val #6e val #6f | val #6g
2) Similar | Similar | Similar | Query | Similar | Similar

#6 #2 #1 #3 #4
dim #1 | val #1f val #1c val #1b | val #1 val #1 val #1d
dim#2 | val #2b val #2b | val#2a | val#2a | val#2a | val#2d
dim#3 | val #3f val #3 val #3 val #3 val #3c val #3d
dim#4 | val #4 val #4 val #4 val #4 val #4c | val#4d
dim #5 | val #5f val #5¢ val #5b val #5a val #5 val #5
dim#6 | val #6f val #6b | val#6a | val#6 val #6c | val #6d
3) Similar | Similar | Similar | Query | Similar | Similar

#6 #2 #1 #3 #4
dim#1 | val #1f val #1c | val #1b dim #1 = val #1 val #1d
dim #2 dim #2 = val #2b dim #2 = val #2a val #2d
dim #3 | val #3f dim #3 = val #3 val #3c | val#3d
dim #4 dim #4 = val #4 val #4c | val#4d
dim#5 | val #5f val #5¢ | val#5b | val#5a dim #5 = val #5
dim#6 | val #6f val#6b | val#6a | val#6 val #6¢c | val #6d
4) Similar | Similar | Similar | Query | Similar | Similar

#6 #2 #1 #3 #4

‘ ' | dim #1 = val #1
dim #2 = val #2b | dim #2 = val #2a
‘ dim #3 = val #3 [
dim #4 = val #4 dim #5 = val #5




Rainbow boxes

E D P N S A G Cc T Vv | L M F W Y H K R Q
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A ' Hydrophobic
: Polar

@ Rainbow boxes : a recent technique for set visualization
® elements => columns
® sets => rectangular boxes
© color => one color per element
©® box color is the mean of its elements color
® non continguous element in a set => box hole
© elements are ordered so as to minimize the number of holes
® box are stacked vertically by size

[Lamy JB et al. Rainbow boxes: a new technique for overlapping set visualization and two
applications in the biomedical domain. Journal of Visual Language and Computing 2017] 14



Rainbow boxes for patient similarity

¢ Column height = similarity with the new patient

¢ Box height = importance of the box (Ml)

¢ Box color = weighted mean of the header’s color
@ Indicate toward which therapy orientates the box

¢ Visual reasoning

Radiotherapy Surgery
Similar Similar Similar New Similar Similar
#6 #2 #1 patient #3 #4
1
dim #1 = val #1
dim #2 = val #2b dim #2 = val #2a
dim #3 = val #3
dim #4 = val #4 dim #5 = val #5

%

Rainbow boxes

J\

Column
headers

> Boxes

15



Algorithmic translation
of the visual reasoning

function classify(q, X, s, n, m):

q is the query case

X is the case database (we assume that ¢ € X)

5 is the dissimilarity measure (a function taking 2 cases and returning their dissimilarity, e.g. Euclidean distance)
n > 2 is the total number of cases considered (query + similar cases)

m > 1 is the maximum number of boxes selected

For each case i in X, compute s(g, X;)
Let X’ be the set of selected cases, X’ contains the n elements of X with the lowest dissimilarity s(g,7)
We assume that X{ = g and X% to X, are the similar cases

Let d be the distance matrix between cases in X’
For each case i in X":
For each case j in X"

d'l] = 5(7’7.7)

Let w be the weights of the similar cases
1 alf Smazxr = Smin

): —
wy Smmas—5(4,X!)

——— , otherwise
with $pmin = min(s(q, X7)) and sy, = max(s(q, X!))

Let y; and y» be the two best classes in X’ (determined by a majority vote over similar cases, weighted by w;)
Let X" be the subset of X’ displayed in rainbow boxes

X" =X"n({q} Uy Uys)

Let B be the set of candidates boxes (currently empty)
For each dimension Z:
If Z has numeric values:
Discretize Z
For each value v that Z takes in cases X”:
If ¢ has value v for dimension Z:
Add Zv={z € X" | 2z = v} into B

p(z)p(y)
2e{Z=v,Z#v} ye{y1,y2}
|Z, |x"\2,| | 2.0y X"\ Z2)

with p(y) = g PZ = 0) = peirtay 22 # 0) = fxmg) PE = vy) = waey HZ # 0.0) = Sempy
Let B’ be the set of selected boxes, B’ contains the m elements of B with the highest M1(Z,Y)

Compute S, = > (]UI(ZUY) x Y Awaci<n | i € Z, ﬂyl})

Z,eB’
Compute S, = 3 (AII(ZvY) x Y A{wa<i<n | i € Z, ﬂyg})
Z,EB’
If S, >S,:
return y;
Else:

return y»



Resulting interface

O Surgery

¢ Boxes give arguments in favor one type of therapy
¢ Physicians may choose a different option if he disagrees

v Radiotherapy

Obstretics Age

' Number of exci
-3 - _Aa

N o

17



Resulting interface

¢ Chemotherapy v Radiotherapy
v O o o #134 ~ ~ o o3
o et = Query g 0 & g o~
H H i H* H* H* H *
- I EMetastasic nodes = 3
o © éFamily history Bilateral
iFamily history Relative age = 38
Obstretics Age at menarche < 15
v Nuclear grade = Grade2
o® Obstretics Number of miscarriages < 28
Stage = IIA
Number of lesions = 3

¢ Boxes give arguments in favor one type of therapy
¢ Physicians may choose a different option if he disagrees

¢ Limited to 2-6 classes of therapy

¢ => Hierarchical approach dividing the decision in several smaller ones 18




Ontology of breast cancer therapy

@ We organized possible therapies in a formal ontology
¢ OWL format
¢ Owlready ontology-oriented programming module for Python

@ sgunr OFFERTE!

V7 ( 'Breast Cancer Procedure'
V( 'Breast Cancer loco-regional procedure'

V('Breast Cancer Radiotherapy'
‘Breast Irradiation’ PYthOIl
'‘Chest Wall Irradiation’ A
'Lymph Node irradiation’ et les ﬂntﬂlﬂgles
“V( 'Breast Cancer Surgical Procedure'’
“( 'Breast Cancer Removal Surgery Procedure'
7 'Breast Surgical Procedure’ [ sy Bl
'‘Biopsy of Breast' | ey a=
WV ( 'Breast Conservation Treatment' | b 7?& oE
| R 2
Quadrantectomy % 4 "‘(;'"_
'Breast Re-Excision' a3 T
Mastectomy ) o
'Oncoplastic Breast Surgery'
D ‘Lymph Node Surgical Procedure'’ French bOOk on OWIready!

'‘Breast Plastic Surgery Procedure'’

'Breast Surgery Ancillary Procedure’ JB Lamy
D '‘Breast Cancer Non Therapeutic Management'

“V ('Breast Cancer Systemic Therapy' Python et IeS OntOIOQieS
'Ancill Systemic Th ' s
Endocrine Therapy' ENI editions, 2019
'Systemic Chemotherapy'

Jran-Baphinte LAY

19



Hierarchical approach

O surgery ¢ oncology
00w O 9 NS O N O M <t #0 <t < o © 5] © ~ M
N O O — 1O © O~ N~ W W0 To} Query © N ® 0 N M <t ToliTe) o
DO D = H - O = = N O I~ o~ o~ I~ (@))] o o O =) =)
NN N O MMM omo‘Homon oo ~ N N N 2] Mm oM M ™
R T T T T T T 3 I i 3 H* # #* ®
P A ' Etumor siie atUlltrasoluné :
'd = 39.5 — P
i i breast co
. . ‘mposition !
tumor ; . :
'tumorBIRADSCate |
; s ~dRADT . Dias .
tumor size atMammography = 35.5
;ag:e; :66-81: age: 61-66 | =.
| her2IHCResult = Her2IHC2Plus

Compare surgery...

¢ Buttons allow to choose one of the two major classes of therapy

Compare oncology...

® Then, the visualization is limited to the similar patients with this therapy

® New classes are determined, accor

ding to the ontology

20



' ERResult = 84
' ki67Result: 8-40

4
'

i tumor size a

Compare Lumpectomy...

Lumpectomy

Compare surgery...

© oncology

#0
Query

=1 '=°
& e
N .
. )
d= 39.5 o
Cumoiupsens o°
tumor size atMammography = 35.5 P
) T i
Mastectomy

Eage < 49

‘breast co

Compare Mastectomy...




Lumpectomy

Compare Lumpectomy...

Lumpectomy:
Sentinel axillary lymph
node biopsy

$

Lumpectomy:

Axillary
lymph node
dissection




o surgery © oncology

#0
Query

#2964
#2724

tumor
" tumorBIRADSCate

tumor size atMammography = 35.5

‘age: 6681  age: 61-66 :
. her2IHCResult = Her2IHC2Plus

Compare surgery... Compare oncology...

Lumpectomy Mastectomy
o
(L.
o

: : 8
| ERResult = 84 .
67Result: 8-40 s
) o s

=}

Compare Lumpectomy... Compare Mastectomy...

Mastectomy:
Axillary lymph node Mastectomy:
dissection Axillary lymph
Sentinel axillary lymph node dissection
node biopsy




o surgery < oncology

o
#0 o2,
dwo oY aYOoLoam % % o © ® ©va 5o o o
EO® =% ©0aRNBD0n B Query o © © 9 @9 1w =)
52 oS85 888 R 58 R & & 83 88 . o
2335558308888 § 28 § & 8 88 88
FEE KK R EE R R KR ¥ * % % ¥ % w® w %
tumor size atUltrasoun °
d =395 B o
breast co
mposition Ny
Lo ° o
tumorBIRADSCate °
tumor size atMammography = 35.5
age: 66-81 age: 61-66
her2IHCResult = Her2IHC2Plus
Compare surgery... Compare oncology...

Cyclophosphamide Doxorubicin

Cyclophosphamide

Paclitaxel Trastuzumab Docetaxel
standard therapy Epirubicin

N o~ Query |» 1%}
H* +* H* H*

tumor size atUltrasound: 37.
5-48.0 .
tumorBIRADSCategory atMRI
= Birads5

tumor size atMammography: = 40.0

multiple tumors
atUltrasound




Discussion and conclusion

A hierarchical visual approach for explainable therapeutical
decision-making

@ Similar accuracy as kNN, but better explainability

@ Main limits:
¢ May require some training for the physicians
¢ Number of similar cases is reduced at each iteration
©® Should we extract additional cases to compensate?

Set visualization is an interesting approach to explainable artificial
Intelligence (XAl)

@ Perspectives:
¢ Clinical validation and evaluation
¢ Adaptation to other domains
¢ Extension to other Al technigues (deep learning, boosting) 25
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