IVAPP 2019 - Prague

Dynamic software visualization of quantum algorithms with rainbow boxes

Jean-Baptiste Lamy
jean-baptiste.lamy @ univ-paris13.fr

Introduction

Ø Quantum computing
Combines quantum physics, computer science and information theory
Can outperform classical algorithms in terms of complexity
Requires specific hardware and algorithms

- Often complex and unintuitive

Ø Software visualization

- Represents graphically
- Algorithms, software, source codes (static approach)
- Runtime data or memory (dynamic approach)
- Here, we propose a dynamic software visualization approach to quantum algorithms
- Visualizes the quantum memory (quits) during the execution of a quantum algorithm
- Relies on set visualization

Introduction: quantum computing

- Classical bits => quantum bits (qubits)
- Two states $|0\rangle$ and $|1\rangle$ (Dirac notation)
- But also superpositions of these two states: $a|0\rangle+b|1\rangle$
- A and b are complex numbers with $|a|^{2}+|b|^{2}=1$
- 1 qubit has the computing power of 2 real numbers

■ BUT
When measured, 1 qubit produces only 1 classical bit of information (e.g. 0 or 1).

- 0 is obtained with probability $|\mathrm{a}|^{2}$, and 1 with probability $|\mathrm{b}|^{2}$

Several distinct superpositions exist with the same probabilities of measuring 0 and 1

- They differ by their relative phase
- It has no impact on the measure
- But can impact other operations performed on the qubit

Introduction: quantum computing

\square Surface of the Bloch sphere

- Represents the state of 1 qubit
- Cannot be applied to more than one qubit

Introduction: quantum computing

- Multiple qubits

Due to quantum entanglement, the value of the various qubits may not be independent from each other

- The computing power increases exponentially with the number of qubits
- The state of n qubits is a superposition of 2^{n} values
- For 3 qubits ($a, b, c \ldots$ are complex numbers with $|a|^{2}+|b|^{2}+\ldots=1$): $\mathrm{a}|000\rangle+\mathrm{b}|001\rangle+\mathrm{c}|010\rangle+\mathrm{d}|011\rangle+\mathrm{e}|100\rangle+\mathrm{f}|101\rangle+\mathrm{g}|110\rangle+\mathrm{h}|111\rangle$
- Some states are not fully entangled but separable in a tensor product
- For example $\frac{1}{\sqrt{2}}|000\rangle+\frac{1}{\sqrt{2}}|011\rangle$ can be factored as: $|0\rangle \otimes\left(\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle\right)$
- When measured, returns 000 or 011 (50\%)
qubit \#1 is not entangled qubit \#2 and \#3 are entangled
- Relative phases exist also on multiple qubits
- Several superpositions yield the same probability when measured

Introduction: quantum circuit

Q Quantum circuit is the main approach to quantum computing

- Circuit with quantum gates
- Used in IBM Q Experience environment for graphical programming
- Example circuit for quantum teleportation:

Introduction: quantum circuit

Q Quantum circuit is the main approach to quantum computing

- Example circuit for quantum teleportation:

Introduction: quantum circuit

Q Quantum circuit is the main approach to quantum computing

- Example circuit for quantum teleportation:

Hadamard gate:
creates a superposition
e.g. $|0\rangle \rightarrow \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$

8 gates

3 qubits

Introduction: quantum circuit

Q Quantum circuit is the main approach to quantum computing

- Example circuit for quantum teleportation:

Hadamard gate:
creates a superposition e.g. $|0\rangle \rightarrow \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$

Conditional NOT gate: if first quit is $|1\rangle$, swaps
$|0\rangle$ and $|1\rangle$ on the second $a|0\rangle+b|1\rangle \rightarrow b|0\rangle+a|1\rangle$

8 gates 3 quits

Introduction: quantum circuit

Q Quantum circuit is the main approach to quantum computing
Example circuit for quantum teleportation:

Hadamard gate:

creates a superposition e.g. $|0\rangle \rightarrow \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$

Conditional NOT gate:

 if first qubit is $|1\rangle$, swaps$|0\rangle$ and $|1\rangle$ on the second $a|0\rangle+b|1\rangle \rightarrow b|0\rangle+a|1\rangle$

Measure gate: $a|0\rangle+b|0\rangle \rightarrow 0\left(\right.$ probability $\left.|a|^{2}\right)$ 1 (probability $|\mathrm{b}|^{2}$) 3 qubits

Introduction: quantum circuit

Quantum circuit is the main approach to quantum computing

- Example circuit for quantum teleportation:

Hadamard gate:

creates a superposition e.g. $|0\rangle \rightarrow \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$

Conditional NOT gate:

 if first qubit is $|1\rangle$, swaps$|0\rangle$ and $|1\rangle$ on the second $a|0\rangle+b|1\rangle \rightarrow b|0\rangle+a|1\rangle$

Measure gate:

 $a|0\rangle+b|0\rangle \rightarrow 0\left(\right.$ probability $\left.|a|^{2}\right)$ 1 (probability |b|²)Conditional Z gate: if first qubit is |1), flip the phase of the second qubit
i.e. $a|0\rangle+b|1\rangle$
$\rightarrow a|0\rangle-b|1\rangle$

Introduction: quantum circuit

Q Quantum circuit is the main approach to quantum computing

- Example circuit for quantum teleportation:

Problem: due to entanglement, a gate may modify a qubit not involved in the gate!

Hadamard gate:

creates a superposition e.g. $|0\rangle \rightarrow \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$

Conditional NOT gate: if first qubit is $|1\rangle$, swaps
$|0\rangle$ and $|1\rangle$ on the second $a|0\rangle+b|1\rangle \rightarrow b|0\rangle+a|1\rangle$

Measure gate:

$a|0\rangle+b|0\rangle \rightarrow 0\left(\right.$ probability $\left.|a|^{2}\right)$
1 (probability |b|²)

Conditional \mathbf{Z} gate: if first qubit is |1), flip the phase of the second qubit
i.e. $a|0\rangle+b|1\rangle$
$\rightarrow a|0\rangle-b|1\rangle$

Set visualization

Ø Considers sets and elements
Ø Rainbow boxes : a recent technique for set visualization

- elements => columns
- sets => rectangular boxes
- color => one color per element
- box color is the mean of its elements color
- non continguous element in a set => box hole
- elements are ordered so as to minimize the number of holes
- box are stacked vertically by size

Unique description of a multiple-qubit state

\square Vector formula (Dirac or matrix notation) are not unique
Due to the global phase phenomenon (only relative phases matter)
The two following 2-qubit states are different mathematically, but equivalent physicially (or computationally):
$\sqrt{\frac{1}{4}}|0\rangle+\sqrt{\frac{3}{4}} i|1\rangle \quad\left(\frac{1}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}} i\right)|0\rangle+\left(\frac{\sqrt{3}}{2 \sqrt{2}} i-\frac{\sqrt{3}}{2 \sqrt{2}}\right)|1\rangle$

Unique description of a multiple-qubit state

Ø Vector formula (Dirac or matrix notation) are not unique
Due to the global phase phenomenon (only relative phases matter)

- The two following 2-qubit states are different mathematically, but equivalent physicially (or computationally):
$\sqrt{\frac{1}{4}}|0\rangle+\sqrt{\frac{3}{4}} i|1\rangle \quad\left(\frac{1}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}} i\right)|0\rangle+\left(\frac{\sqrt{3}}{2 \sqrt{2}} i-\frac{\sqrt{3}}{2 \sqrt{2}}\right)|1\rangle$
\square We designed a unique representation of multiple-qubit states
- Step 1: factorize separable states as much as possible

$$
\frac{1}{\sqrt{2}}|000\rangle+\frac{1}{\sqrt{2}}|011\rangle \rightarrow|0\rangle \otimes\left(\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle\right)
$$

Step 2: describe each superposed states (e.g. |0才, |11|,...) by (p, φ)

- p is the probability of measuring this state
- φ is the relative phase

Unique description of a multiple-qubit state

- Step 1: factorize separable states as much as possible

Step 2: describe each superposed states (e.g. |000), |011才, ...) by (p, φ)
\checkmark Step 3: fix a reference phase φ_{0} for each factor

- φ_{0} is the relative phase of the lowest bit-value state present (e.g. |00才)
- Compute normalized phases $\varphi^{\prime}=\left(\varphi-\varphi_{o}\right) \bmod 2 \pi$

Unique description of a multiple-qubit state

- Step 1: factorize separable states as much as possible

Step 2: describe each superposed states (e.g. |000), |011才,...) by (p, φ)
Step 3: determine a reference phase φ_{0}

- φ_{0} is the relative phase of the lowest bit-value state present (e.g. |00才)
- Compute normalized phases $\varphi^{\prime}=\left(\varphi-\varphi_{0}\right) \bmod 2 \pi$
- Step 4: describe uniquely a multiple qubit-state by a set of quadruplets:

```
{(q,B,p,\varphi')} ->q is the subset of qubits involved
    \rightarrow \mathrm { B } \text { is the state}
    \rightarrow \mathrm { p } \text { is the probability of measuring the state}
    ->}\varphi\mathrm{ ' is the normalized phase
```


Unique description of a multiple-qubit state

- Step 1: factorize separable states as much as possible

Step 2: describe each superposed states (e.g. |000), |011才, ...) by (p, φ)
Step 3: determine a reference phase φ_{0}

- φ_{0} is the relative phase of the lowest bit-value state present (e.g. $|00\rangle$)
- Compute normalized phases $\varphi^{\prime}=\left(\varphi-\varphi_{0}\right) \bmod 2 \pi$

Step 4: describe uniquely a multiple qubit-state by a set of quadruplets:

$$
\begin{array}{ll}
\left\{\left(q, B, p, \varphi^{\prime}\right)\right\} & \rightarrow q \text { is the subset of qubits involved } \\
& \rightarrow B \text { is the state } \\
& \rightarrow p \text { is the probability of measuring the state } \\
\rightarrow \varphi^{\prime} \text { is the normalized phase }
\end{array}
$$

$$
|0\rangle \otimes\left(\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle\right) \rightarrow \begin{aligned}
& 3 \text { quadruplets: } \\
& (\{1\},|0\rangle, 100 \%, 0) \\
& (\{2,3\},|00\rangle, 50 \%, 0) \\
& (\{2,3\},|11\rangle, 50 \%, 0)
\end{aligned}
$$

"qubit \#1 takes value 0 with probability 100% "
"qubits \#2 and \#3 take values 00 with probability 50% "
"qubits \#2 and \#3 take values 11 with probability 50% and a relative phase of 0 "

Visual representation

- Multiple-qubit state visualization
- A typed-set visualization problem (first member of quadruplets)
- We used rainbow boxes
- One column per qubit
- One box per quadruplet
\square Visual encoding:
qubits q: box X position and box width
state B: box Y position, hatches, label
\checkmark probability p: box height
phase φ ': box color

Opposite color => opposite phase (i.e. Z gate)

Visual representation

Qubits 2 and 3 are entangled
(= boxes span across the 2 columns)
Qubit 1 is not entangled
(= no box shared with other qubits)

刁 Visual encoding:

- qubits q : box X position and box width
state B: box Y position, hatches, label
\checkmark probability p: box height
- phase φ ': box color

Visual representation

Ø Visual encoding:

- quits q : box X position and box width
\checkmark state B: box Y position, hatches, label
\checkmark probability p: box height
phase φ ': box color

Same probability of measuring $|00\rangle$ and |11〉 (= same box height)

Visual representation

No phase shift for qubits 2 and 3 (= green color)

Ø Visual encoding:
qubits q : box X position and box width
state B: box Y position, hatches, label
\checkmark probability p: box height
phase φ ': box color

Implementation

- Python 3
- ProjetQ
\rightarrow Python module for quantum computing
- Compiles quantum circuits for various hardware
- Can also simulate a quantum computer on a classical hardware
- In simulation mode, one can access the inner states of the qubits (which is not possible with quantum hardware)

Application to Bell pair

- Example on the Bell pair
- Bell pair : two qubits with maximal level of entanglement
- Hadamard gate (H)
- Conditional Not gate (CNOT)
- Then measurement
\checkmark One set of rainbow boxes for each step of the algorithm

Application to quantum teleportation

Objective: "teleport" the value of q1

- Step 1 and 2 creates a Bell pair

step 1:
H | q2

q1	q2	q3
\|111)		
\|110)		
[101)		
\|100)		
\|011)		
\|010)		
\|001)		
\|000)		

step 3:
CNOT | (q1, q2)

q1	q2
$\|110\rangle$	
$\|101\rangle$	
$\|011\rangle$	
$\|000\rangle$	

step 5: Measure | q1

step 8:
$C(Z) \mid(q 1, q 3)$

Application to quantum teleportation

Objective: "teleport" the value of q1

- Step 1 and 2 creates a Bell pair
- Step 3 entangles q1 with the Bell pair

step 5:
Measure | q1

step 8:
$C(Z) \mid(q 1, q 3)$

Application to quantum teleportation

Objective: "teleport" the value of q1

- Step 1 and 2 creates a Bell pair
- Step 3 entangles q1 with the Bell pair
- Step 4 apply Hadamard gate
=> probability of measuring 0 or 1 is now 50% for all qubits but the initial value is not lost!

step 0:
(init)

q1	q2
$\|110\rangle$	
$\|101\rangle$	
$\|011\rangle$	
$\|000\rangle$	

step 3:
CNOT | (q1, q2)

step 1:
H | q2

$q 1$	$q 2$	$q 3$
$\|111\rangle$		
$\|110\rangle$		
$\|101\rangle$		
$\|100\rangle$		
$\|011\rangle$		
1010\rangle		
1001\rangle		
$\|000\rangle$		

step 4:
H | q1

step 5:
Measure | q1

step 8:
$C(Z) \mid(q 1, q 3)$

Application to quantum teleportation

Objective: "teleport" the value of q1

- Step 1 and 2 creates a Bell pair
- Step 3 entangles q1 with the Bell pair
- Step 4 apply Hadamard gate
=> probability of measuring 0 or 1 is now 50% for all qubits but the initial value is not lost!
- Step 5 and 6 measures q1 and q2

step 0:
(init)

q1	q2
$\|110\rangle$	
$\|101\rangle$	
$\|011\rangle$	
1000\rangle	

step 3:
CNOT | (q1, q2)

step 1:
H | q2

$q 1$	$q 2$	$q 3$
$\|111\rangle$		
$\|110\rangle$		
$\|101\rangle$		
$\|100\rangle$		
$\|011\rangle$		
$\|010\rangle$		
$\|001\rangle$		
1000\rangle		

step 4:
H | q1

step 5:
Measure | q1

Application to quantum teleportation

Objective: "teleport" the value of q1

- Step 1 and 2 creates a Bell pair
- Step 3 entangles q1 with the Bell pair
- Step 4 apply Hadamard gate => probability of measuring 0 or 1 is now 50% for all qubits but the initial value is not lost!
- Step 5 and 6 measures q1 and q2
- Step 7 and 8 rebuild the value in q3, according to the values measured

step 0:
(init)

q1	q2
$\|110\rangle$	
$\|101\rangle$	
$\|011\rangle$	
1000\rangle	

step 3:
CNOT | (q1, q2)

step 1:
H | q2

q1	q2	q3
$\|111\rangle$		
$\|110\rangle$		
$\|101\rangle$		
$\|100\rangle$		
$\|011\rangle$		
1010\rangle		
1001\rangle		
1000\rangle		

step 4:
H | q1

step 7:
CNOT | (q2, q3)

step 5:
Measure | q1

Discussion

Ø Most visual approach to quantum computing relies on Bloch sphere or complex plane (CP)
\checkmark We showed that set visualization is another possibility

- The proposed state visualization is unique
- Different visual representations imply different states
- Interesting for teaching quantum computing
- Quantum theory is known to be unintuitive
- Allows an empirical and experimental "trial and error" approach to quantum computing
- e.g. testing quantum teleportation on different initial states, or testing modified algorithms ("what about swapping step 7 and 8?")

Perspectives

■ Use and evaluation in education

- Integration in ProjectQ

Ø Extension to other quantum computing paradigm, beyond quantum circuits

Questions?

References:

[Rainbow Boxes] : Lamy JB, Berthelot H, Favre M, Ugon A, Duclos C, Venot A. Using visual analytics for presenting comparative information on new drugs. J Biomed Inform 2017;71:58-69
[ProjetQ] : Steiger DS, Häner T, Troyer M. ProjectQ: An open source software framework for quantum computing. Quantum, 2018;2:49

