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Introduction

Quantum computing

Combines quantum physics, computer science and information theory

Can outperform classical algorithms in terms of complexity

Requires specific hardware and algorithms

Often complex and unintuitive

Software visualization

Represents graphically

Algorithms, software, source codes (static approach)

Runtime data or memory (dynamic approach)

Here, we propose a dynamic software visualization approach to 
quantum algorithms

Visualizes the quantum memory (qubits) during the execution of a 
quantum algorithm

Relies on set visualization
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Introduction: quantum computing

Classical bits => quantum bits (qubits)

Two states |0  and |1  (Dirac notation)⟩ and |1⟩ (Dirac notation) ⟩ and |1⟩ (Dirac notation)

But also superpositions of these two states: a|0  + b|1⟩ and |1⟩ (Dirac notation) ⟩ and |1⟩ (Dirac notation)

A and b are complex numbers with |a|² + |b|² = 1

1 qubit has the computing power of 2 real numbers

BUT

When measured, 1 qubit produces only 1 classical bit of 
information (e.g. 0 or 1).

0 is obtained with probability |a|², and 1 with probability |b|²

Several distinct superpositions exist with the same probabilities of 
measuring 0 and 1

They differ by their relative phase

It has no impact on the measure

But can impact other operations performed on the qubit
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Introduction: quantum computing

Surface of the Bloch sphere

Represents the state of 1 qubit

Cannot be applied to
more than one qubit

Relative phase
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Introduction: quantum computing

Multiple qubits

Due to quantum entanglement, the value of the various qubits may 
not be independent from each other

The computing power increases exponentially with the number of qubits

The state of n qubits is a superposition of 2n values

For 3 qubits (a, b, c… are complex numbers with |a|² + |b|² + … = 1):
a|000  + b|001  + ⟩ and |1⟩ (Dirac notation) ⟩ and |1⟩ (Dirac notation) c|010  + d|011  + ⟩ and |1⟩ (Dirac notation) ⟩ and |1⟩ (Dirac notation) e|100  + f|101  + ⟩ and |1⟩ (Dirac notation) ⟩ and |1⟩ (Dirac notation) g|110  + h|111⟩ and |1⟩ (Dirac notation) ⟩ and |1⟩ (Dirac notation)

Some states are not fully entangled but separable in a tensor product

For example    |000  +    |011  can be factored as: |0 (⟩ and |1⟩ (Dirac notation) ⟩ and |1⟩ (Dirac notation) ⟩ and |1⟩ (Dirac notation)⊗(    |00  +    |11 )⟩ and |1⟩ (Dirac notation) ⟩ and |1⟩ (Dirac notation)

When measured, returns 000 or 011 (50%)

Relative phases exist also on multiple qubits

Several superpositions yield the same probability when measured

1

√2
1

√2
1

√2
1

√2

qubit #1 is not entangled
qubit #2 and #3 are entangled
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Introduction: quantum circuit

Quantum circuit is the main approach to quantum computing

Circuit with quantum gates

Used in IBM Q Experience environment for graphical programming

Example circuit for quantum teleportation:
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Introduction: quantum circuit

Quantum circuit is the main approach to quantum computing

Example circuit for quantum teleportation:

3 qubits

8 gates
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Introduction: quantum circuit

Quantum circuit is the main approach to quantum computing

Example circuit for quantum teleportation:

3 qubits

8 gates

Hadamard gate:
creates a superposition
e.g. |0⟩ and |1⟩ (Dirac notation)→    |0  +    ⟩ and |1⟩ (Dirac notation) |1⟩ and |1⟩ (Dirac notation)1

√2
1

√2
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Introduction: quantum circuit

Quantum circuit is the main approach to quantum computing

Example circuit for quantum teleportation:

3 qubits

8 gates

Hadamard gate:
creates a superposition
e.g. |0⟩ and |1⟩ (Dirac notation)→    |0  +    ⟩ and |1⟩ (Dirac notation) |1⟩ and |1⟩ (Dirac notation)1

√2
1

√2

Conditional NOT gate:
if first qubit is |1 , swaps⟩ and |1⟩ (Dirac notation)
|0  and |1  on the second⟩ and |1⟩ (Dirac notation) ⟩ and |1⟩ (Dirac notation)
a|0  + b⟩ and |1⟩ (Dirac notation) |1⟩ and |1⟩ (Dirac notation)→ b|0  + a⟩ and |1⟩ (Dirac notation) |1⟩ and |1⟩ (Dirac notation)
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Introduction: quantum circuit

Quantum circuit is the main approach to quantum computing

Example circuit for quantum teleportation:

3 qubits

8 gates

Hadamard gate:
creates a superposition
e.g. |0⟩ and |1⟩ (Dirac notation)→    |0  +    ⟩ and |1⟩ (Dirac notation) |1⟩ and |1⟩ (Dirac notation)1

√2
1

√2

Measure gate:
a|0  + b⟩ and |1⟩ (Dirac notation) |0⟩ and |1⟩ (Dirac notation)→ 0 (probability |a|²)
                     1 (probability |b|²)

Conditional NOT gate:
if first qubit is |1 , swaps⟩ and |1⟩ (Dirac notation)
|0  and |1  on the second⟩ and |1⟩ (Dirac notation) ⟩ and |1⟩ (Dirac notation)
a|0  + b⟩ and |1⟩ (Dirac notation) |1⟩ and |1⟩ (Dirac notation)→ b|0  + a⟩ and |1⟩ (Dirac notation) |1⟩ and |1⟩ (Dirac notation)
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Introduction: quantum circuit

Quantum circuit is the main approach to quantum computing

Example circuit for quantum teleportation:

3 qubits

8 gates

Hadamard gate:
creates a superposition
e.g. |0⟩ and |1⟩ (Dirac notation)→    |0  +    ⟩ and |1⟩ (Dirac notation) |1⟩ and |1⟩ (Dirac notation)1

√2
1

√2

Measure gate:
a|0  + b⟩ and |1⟩ (Dirac notation) |0⟩ and |1⟩ (Dirac notation)→ 0 (probability |a|²)
                     1 (probability |b|²)

Conditional Z gate:
if first qubit is |1 ,⟩ and |1⟩ (Dirac notation)
flip the phase of the
second qubit
i.e. a|0  + b|1⟩ and |1⟩ (Dirac notation) ⟩ and |1⟩ (Dirac notation)
 → a|0   - b⟩ and |1⟩ (Dirac notation) |1⟩ and |1⟩ (Dirac notation)

Conditional NOT gate:
if first qubit is |1 , swaps⟩ and |1⟩ (Dirac notation)
|0  and |1  on the second⟩ and |1⟩ (Dirac notation) ⟩ and |1⟩ (Dirac notation)
a|0  + b⟩ and |1⟩ (Dirac notation) |1⟩ and |1⟩ (Dirac notation)→ b|0  + a⟩ and |1⟩ (Dirac notation) |1⟩ and |1⟩ (Dirac notation)
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Introduction: quantum circuit

Quantum circuit is the main approach to quantum computing

Example circuit for quantum teleportation:

Problem: due to entanglement, a gate may modify a qubit not involved in 
the gate!

3 qubits

8 gates

Hadamard gate:
creates a superposition
e.g. |0⟩ and |1⟩ (Dirac notation)→    |0  +    ⟩ and |1⟩ (Dirac notation) |1⟩ and |1⟩ (Dirac notation)1

√2
1

√2

Measure gate:
a|0  + b⟩ and |1⟩ (Dirac notation) |0⟩ and |1⟩ (Dirac notation)→ 0 (probability |a|²)
                     1 (probability |b|²)

Conditional Z gate:
if first qubit is |1 ,⟩ and |1⟩ (Dirac notation)
flip the phase of the
second qubit
i.e. a|0  + b|1⟩ and |1⟩ (Dirac notation) ⟩ and |1⟩ (Dirac notation)
→ a|0  - b⟩ and |1⟩ (Dirac notation) |1⟩ and |1⟩ (Dirac notation)

Conditional NOT gate:
if first qubit is |1 , swaps⟩ and |1⟩ (Dirac notation)
|0  and |1  on the second⟩ and |1⟩ (Dirac notation) ⟩ and |1⟩ (Dirac notation)
a|0  + b⟩ and |1⟩ (Dirac notation) |1⟩ and |1⟩ (Dirac notation)→ b|0  + a⟩ and |1⟩ (Dirac notation) |1⟩ and |1⟩ (Dirac notation)
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Set visualization

Considers sets and elements

Rainbow boxes : a recent technique for set visualization

elements => columns

sets => rectangular boxes

color => one color per element

box color is the mean of its elements color

non continguous element in a set => box hole

elements are ordered so as to minimize the number of holes

box are stacked vertically by size

Best paper

at iV2017 and iV2018!
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Unique description
of a multiple-qubit state

Vector formula (Dirac or matrix notation) are not unique

Due to the global phase phenomenon (only relative phases matter)

The two following 2-qubit states are different mathematically,
but equivalent physicially (or computationally):
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Unique description
of a multiple-qubit state

Vector formula (Dirac or matrix notation) are not unique

Due to the global phase phenomenon (only relative phases matter)

The two following 2-qubit states are different mathematically,
but equivalent physicially (or computationally):

We designed a unique representation of multiple-qubit states

Step 1: factorize separable states as much as possible

Step 2: describe each superposed states (e.g. |0 , |11 ,…) by (p, ⟩ and |1⟩ (Dirac notation) ⟩ and |1⟩ (Dirac notation) φ))

p is the probability of measuring this state

φ) is the relative phase
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Unique description
of a multiple-qubit state

Step 1: factorize separable states as much as possible

Step 2: describe each superposed states (e.g. |000 , |011 ,…) by (p,⟩ and |1⟩ (Dirac notation) ⟩ and |1⟩ (Dirac notation) φ))

Step 3: fix a reference phase φ)0 for each factor

φ)0 is the relative phase of the lowest bit-value state present (e.g. |00 )⟩ and |1⟩ (Dirac notation)

Compute normalized phases φ)’ = (φ) - φ)0) mod 2π 
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Unique description
of a multiple-qubit state

Step 1: factorize separable states as much as possible

Step 2: describe each superposed states (e.g. |000 , |011 ,…) by (p,⟩ and |1⟩ (Dirac notation) ⟩ and |1⟩ (Dirac notation) φ))

Step 3: determine a reference phase φ)0 

φ)0 is the relative phase of the lowest bit-value state present (e.g. |00 )⟩ and |1⟩ (Dirac notation)

Compute normalized phases φ)’ = (φ) - φ)0) mod 2π 

Step 4: describe uniquely a multiple qubit-state by a set of quadruplets:

 { (q, B, p, φ)’) }
➔q is the subset of qubits involved
➔B is the state
➔p is the probability of measuring the state
➔φ)’ is the normalized phase
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Unique description
of a multiple-qubit state

Step 1: factorize separable states as much as possible

Step 2: describe each superposed states (e.g. |000 , |011 ,…) by (p,⟩ and |1⟩ (Dirac notation) ⟩ and |1⟩ (Dirac notation) φ))

Step 3: determine a reference phase φ)0 

φ)0 is the relative phase of the lowest bit-value state present (e.g. |00 )⟩ and |1⟩ (Dirac notation)

Compute normalized phases φ)’ = (φ) - φ)0) mod 2π 

Step 4: describe uniquely a multiple qubit-state by a set of quadruplets:

 { (q, B, p, φ)’) }

3 quadruplets:
( {1}, |0 , 100%, 0 ⟩ and |1⟩ (Dirac notation) )
( {2, 3}, |00 , 50%, 0 ⟩ and |1⟩ (Dirac notation) )
( {2, 3}, |11 , 50%, 0 ⟩ and |1⟩ (Dirac notation) )

➔q is the subset of qubits involved
➔B is the state
➔p is the probability of measuring the state
➔φ)’ is the normalized phase

“qubit  #1 takes value 0 with probability 100%”
“qubits #2 and #3 take values 00 with probability 50%”
“qubits #2 and #3 take values 11 with probability 50% and a relative phase of 0” 
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Visual representation

Multiple-qubit state visualization

A typed-set visualization problem
(first member of quadruplets)

We used rainbow boxes

One column per qubit

One box per quadruplet

Visual encoding:

qubits q: box X position and box width

state B: box Y position, hatches, label

probability p: box height

phase φ)’: box color

{ (q, B, p, φ)’) }
( {1}, |0 , 100%, 0 ⟩ and |1⟩ (Dirac notation) )
( {2, 3}, |00 , 50%, 0 ⟩ and |1⟩ (Dirac notation) )
( {2, 3}, |11 , 50%, 0 ⟩ and |1⟩ (Dirac notation) )

|0⟩ and |1⟩ (Dirac notation)

|11⟩ and |1⟩ (Dirac notation)

|00⟩ and |1⟩ (Dirac notation)

qubit
1

qubit
2

qubit
3

Opposite color => opposite phase (i.e. Z gate)
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Visual representation

Visual encoding:

qubits q: box X position and box width

state B: box Y position, hatches, label

probability p: box height

phase φ)’: box color

|0⟩ and |1⟩ (Dirac notation)

|11⟩ and |1⟩ (Dirac notation)

|00⟩ and |1⟩ (Dirac notation)

qubit
1

qubit
2

qubit
3

Qubits 2 and 3 are entangled
(= boxes span across the 2 columns)

Qubit 1 is not entangled
(= no box shared with other qubits)
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Visual representation

Visual encoding:

qubits q: box X position and box width

state B: box Y position, hatches, label

probability p: box height

phase φ)’: box color

|0⟩ and |1⟩ (Dirac notation)

|11⟩ and |1⟩ (Dirac notation)

|00⟩ and |1⟩ (Dirac notation)

qubit
1

qubit
2

qubit
3

Same probability of measuring |00  and |11⟩ and |1⟩ (Dirac notation) ⟩ and |1⟩ (Dirac notation)
(= same box height)

=
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Visual representation

Visual encoding:

qubits q: box X position and box width

state B: box Y position, hatches, label

probability p: box height

phase φ)’: box color

|0⟩ and |1⟩ (Dirac notation)

|11⟩ and |1⟩ (Dirac notation)

|00⟩ and |1⟩ (Dirac notation)

qubit
1

qubit
2

qubit
3

No phase shift for qubits 2 and 3
(= green color)
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Implementation

Python 3

ProjetQ

Python module for quantum computing

Compiles quantum circuits for various hardware

Can also simulate a quantum computer on a classical hardware

In simulation mode, one can access the inner states of the qubits
(which is not possible with quantum hardware)
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Application to Bell pair

Example on the Bell pair

Bell pair : two qubits with maximal level of entanglement

Hadamard gate (H)

Conditional Not gate (CNOT)

Then measurement

One set of rainbow boxes for each step of the algorithm
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Application to quantum teleportation

Objective: “teleport” the value of q1

Step 1 and 2 creates a Bell pair
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Application to quantum teleportation

Objective: “teleport” the value of q1

Step 1 and 2 creates a Bell pair

Step 3 entangles q1
with the Bell pair 



27

Application to quantum teleportation

Objective: “teleport” the value of q1

Step 1 and 2 creates a Bell pair

Step 3 entangles q1
with the Bell pair 

Step 4 apply Hadamard gate
=> probability of measuring 0 or 1
is now 50% for all qubits
but the initial value is not lost!
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Application to quantum teleportation

Objective: “teleport” the value of q1

Step 1 and 2 creates a Bell pair

Step 3 entangles q1
with the Bell pair 

Step 4 apply Hadamard gate
=> probability of measuring 0 or 1
is now 50% for all qubits
but the initial value is not lost!

Step 5 and 6 measures q1 and q2
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Application to quantum teleportation

Objective: “teleport” the value of q1

Step 1 and 2 creates a Bell pair

Step 3 entangles q1
with the Bell pair 

Step 4 apply Hadamard gate
=> probability of measuring 0 or 1
is now 50% for all qubits
but the initial value is not lost!

Step 5 and 6 measures q1 and q2

Step 7 and 8 rebuild the value in q3,
according to the values measured
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Discussion

Most visual approach to quantum computing relies on Bloch 
sphere or complex plane (CP)

We showed that set visualization is another possibility

The proposed state visualization is unique

Different visual representations imply different states

Interesting for teaching quantum computing

Quantum theory is known to be unintuitive

Allows an empirical and experimental “trial and error” approach to 
quantum computing

e.g. testing quantum teleportation on different initial states, or testing 
modified algorithms (“what about swapping step 7 and 8?”)
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Perspectives

Use and evaluation in education 

Integration in ProjectQ

Extension to other quantum computing paradigm, beyond 
quantum circuits
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Questions?
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