IVAPP 2019 – Prague

Dynamic software visualization of quantum algorithms with rainbow boxes

Jean-Baptiste Lamy jean-baptiste.lamy @ univ-paris13.fr

Université Paris 13, 93017 Bobigny Sorbonne Universités, Paris INSERM UMRS 1142

Introduction

Quantum computing

- Combines quantum physics, computer science and information theory
- Can outperform classical algorithms in terms of complexity
- Requires specific hardware and algorithms
 - Often complex and unintuitive

Software visualization

- Represents graphically
 - Algorithms, software, source codes (static approach)
 - Runtime data or memory (dynamic approach)

Here, we propose a dynamic software visualization approach to quantum algorithms

- Visualizes the quantum memory (qubits) during the execution of a quantum algorithm
- Relies on set visualization

Introduction: quantum computing

Classical bits => quantum bits (qubits)

- Two states |0> and |1> (Dirac notation)
- \Rightarrow But also superpositions of these two states: $a|0\rangle + b|1\rangle$
- \Rightarrow A and b are complex numbers with $|a|^2 + |b|^2 = 1$
- 1 qubit has the computing power of 2 real numbers

BUT

- When measured, 1 qubit produces only 1 classical bit of information (e.g. 0 or 1).
 - 0 is obtained with probability $|a|^2$, and 1 with probability $|b|^2$
- Several distinct superpositions exist with the same probabilities of measuring 0 and 1
 - They differ by their relative phase
 - It has no impact on the measure
 - But can impact other operations performed on the qubit

Introduction: quantum computing

Introduction: quantum computing

Multiple qubits

- Due to quantum entanglement, the value of the various qubits may not be independent from each other
 - The computing power increases exponentially with the number of qubits
- ♦ The state of n qubits is a superposition of 2ⁿ values
 - For 3 qubits (a, b, c... are complex numbers with $|a|^2 + |b|^2 + ... = 1$): a|000> + b|001> + c|010> + d|011> + e|100> + f|101> + g|110> + h|111>

Some states are not fully *entangled* but *separable* in a tensor product

- For example $\frac{1}{\sqrt{2}}|000\rangle + \frac{1}{\sqrt{2}}|011\rangle$ can be factored as: $|0\rangle\otimes(\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle)$
- When measured, returns 000 or 011 (50%)

qubit #1 is not entangled qubit #2 and #3 are entangled

- Relative phases exist also on multiple qubits
 - Several superpositions yield the same probability when measured

Quantum circuit is the main approach to quantum computing

- Circuit with quantum gates
- Used in IBM Q Experience environment for graphical programming
- Example circuit for quantum teleportation:

Quantum circuit is the main approach to quantum computing

Quantum circuit is the main approach to quantum computing

Quantum circuit is the main approach to quantum computing

Quantum circuit is the main approach to quantum computing

Quantum circuit is the main approach to quantum computing

Quantum circuit is the main approach to quantum computing

Example circuit for quantum teleportation:

Problem: due to entanglement, a gate may modify a qubit not involved in the gate!

Set visualization

Considers sets and elements

Rainbow boxes : a recent technique for set visualization

- elements => columns
- sets => rectangular boxes
- color => one color per element
- box color is the mean of its elements color
- non continguous element in a set => box hole
- elements are ordered so as to minimize the number of holes
- box are stacked vertically by size

at iV2017 and iV2018!

Best paper

Vector formula (Dirac or matrix notation) are not unique

- Due to the global phase phenomenon (only relative phases matter)
- The two following 2-qubit states are different mathematically, but equivalent physicially (or computationally):

$$\sqrt{\frac{1}{4}}|0\rangle + \sqrt{\frac{3}{4}}i|1\rangle \qquad \left(\frac{1}{2\sqrt{2}} + \frac{1}{2\sqrt{2}}i\right)|0\rangle + \left(\frac{\sqrt{3}}{2\sqrt{2}}i - \frac{\sqrt{3}}{2\sqrt{2}}\right)|1\rangle$$

Vector formula (Dirac or matrix notation) are not unique

- Due to the global phase phenomenon (only relative phases matter)
- The two following 2-qubit states are different mathematically, but equivalent physicially (or computationally):

$$\sqrt{\frac{1}{4}}|0\rangle + \sqrt{\frac{3}{4}}i|1\rangle \qquad \left(\frac{1}{2\sqrt{2}} + \frac{1}{2\sqrt{2}}i\right)|0\rangle + \left(\frac{\sqrt{3}}{2\sqrt{2}}i - \frac{\sqrt{3}}{2\sqrt{2}}\right)|1\rangle$$

We designed a unique representation of multiple-qubit states

Step 1: factorize separable states as much as possible

$$\frac{1}{\sqrt{2}}|000\rangle + \frac{1}{\sqrt{2}}|011\rangle \rightarrow |0\rangle \otimes \left(\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle\right)$$

- Step 2: describe each superposed states (*e.g.* $|0\rangle$, $|11\rangle$,...) by (p, ϕ)
 - p is the probability of measuring this state
 - ϕ is the relative phase

- Step 1: factorize separable states as much as possible
- Step 2: describe each superposed states (*e.g.* $|000\rangle$, $|011\rangle$,...) by (p,ϕ)
- Step 3: fix a reference phase ϕ_0 for each factor
 - ϕ_0 is the relative phase of the lowest bit-value state present (e.g. |00))
 - Compute normalized phases $\varphi' = (\varphi \varphi_0) \mod 2\pi$

- Step 1: factorize separable states as much as possible
- Step 2: describe each superposed states (*e.g.* $|000\rangle$, $|011\rangle$,...) by (p,ϕ)
- \diamond Step 3: determine a reference phase ϕ_0
 - φ_0 is the relative phase of the lowest bit-value state present (e.g. $|00\rangle$)
 - Compute normalized phases $\varphi' = (\varphi \varphi_0) \mod 2\pi$
- **Step 4:** describe uniquely a multiple qubit-state by a set of quadruplets:
 - { (q, B, p, φ') }
- →q is the subset of qubits involved
- →B is the state
- \rightarrow p is the probability of measuring the state
- $\bullet \phi'$ is the normalized phase

- Step 1: factorize separable states as much as possible
- Step 2: describe each superposed states (*e.g.* $|000\rangle$, $|011\rangle$,...) by (p, φ)
- \diamond Step 3: determine a reference phase ϕ_0
 - ϕ_0 is the relative phase of the lowest bit-value state present (e.g. |00))
 - Compute normalized phases $\varphi' = (\varphi \varphi_0) \mod 2\pi$

Step 4: describe uniquely a multiple qubit-state by a set of quadruplets:

- - $\rightarrow \phi'$ is the normalized phase

$$|0\rangle \otimes \left(\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle\right) \longrightarrow \begin{array}{l} 3 \text{ quadruplets:} \\ (\{1\}, |0\rangle, 100\%, 0) \\ (\{2, 3\}, |00\rangle, 50\%, 0) \\ (\{2, 3\}, |11\rangle, 50\%, 0)\end{array}$$

"qubit #1 takes value 0 with probability 100%" "qubits #2 and #3 take values 00 with probability 50%" "qubits #2 and #3 take values 11 with probability 50% and a relative phase of 0"

Multiple-qubit state visualization

- A typed-set visualization problem (first member of quadruplets)
- We used rainbow boxes
 - One column per qubit
 - One box per quadruplet

Visual encoding:

- qubits q: box X position and box width
- state B: box Y position, hatches, label
- probability p: box height
- phase φ': box color

{ (q, B, p, φ') } ({1}, |0), 100%, 0) ({2, 3}, |00), 50%, 0) ({2, 3}, |11), 50%, 0)

Opposite color => opposite phase (i.e. Z gate)

Visual encoding:

- qubits q: box X position and box width
- state B: box Y position, hatches, label
- probability p: box height
- \blacklozenge phase ϕ ': box color

Same probability of measuring |00) and |11) (= same box height)

Visual encoding:

- qubits q: box X position and box width
- state B: box Y position, hatches, label
- probability p: box height
- \blacklozenge phase ϕ ': box color

Implementation

Python 3

ProjetQ

- Python module for quantum computing
- Compiles quantum circuits for various hardware
- Can also simulate a quantum computer on a classical hardware
 - In simulation mode, one can access the inner states of the qubits (which is not possible with quantum hardware)

Application to Bell pair

Example on the Bell pair

- Bell pair : two qubits with maximal level of entanglement
 - Hadamard gate (H)
 - Conditional Not gate (CNOT)
 - Then measurement
- One set of rainbow boxes for each step of the algorithm

Objective: "teleport" the value of q1

Step 1 and 2 creates a Bell pair

q2

qЗ

q2

qЗ

q1

|111)

 $|110\rangle$ 101

 $|100\rangle$

|011)

CNOT | (q2, q3)

q1	q2	q3
1}	11)	
	10}	
	01>	
	00}	

step 5: Measure | q1

(8)(0)(1)(2)(3)(4)(7)(5)Η ψ (6) $|0\rangle_{A^{-}}$ Η $|0\rangle_B$ Ζ ψ

q1

(110)

 $|101\rangle$

|011)

(000)

Measure | q2

 $|010\rangle$ |001) $|000\rangle$ step 4:

H | q1

CNOT | (q2, q3)

Objective: "teleport" the value of q1

- Step 1 and 2 creates a Bell pair
- Step 3 entangles q1 with the Bell pair

q2

qЗ

q2

qЗ

 $CNOT \mid (q2, q3)$

q1	q2	q3
11)	J11}	
	10}	/
	01)	
	00)	

step 5: Measure | q1

q1

(110)

 $|101\rangle$

|011>

 $|001\rangle$ $|000\rangle$ step 4:

q1

|111)

 $|110\rangle$ 101

100

|011) $|010\rangle$

step 7: CNOT | (q2, q3)

step 6:

Measure | q2

Objective: "teleport" the value of q1

- Step 1 and 2 creates a Bell pair
- Step 3 entangles q1 with the Bell pair
- Step 4 apply Hadamard gate => probability of measuring 0 or 1 is now 50% for all qubits but the initial value is not lost!

qЗ

qЗ

qЗ

 $|1\rangle$

0)

step 7:

CNOT | (q2, q3)

CNOT | (q2, q3)

step 5: Measure | q1

Objective: "teleport" the value of q1

- Step 1 and 2 creates a Bell pair
- Step 3 entangles q1 with the Bell pair
- Step 4 apply Hadamard gate => probability of measuring 0 or 1 is now 50% for all qubits but the initial value is not lost!
- Step 5 and 6 measures g1 and g2

 $|110\rangle$

 $|101\rangle$

|011>

(000)

q2

q2

10

qЗ

qЗ

 $|1\rangle$

0)

q1

 $|111\rangle$

 $|110\rangle$

 $|101\rangle$

100

 $|011\rangle$ $|010\rangle$ $|001\rangle$

 $|000\rangle$

step 4:

H | q1

q1

 $|1\rangle$

step 7:

CNOT | (q2, q3)

CNOT | (q2, q3)

q1	q2	q3
1)	11}	
	10)	/
	01)	
	00}	

Measure | q1

C(Z) | (q1, q3)

Objective: "teleport" the value of q1

- Step 1 and 2 creates a Bell pair
- Step 3 entangles q1 with the Bell pair
- Step 4 apply Hadamard gate => probability of measuring 0 or 1 is now 50% for all qubits but the initial value is not lost!
- Step 5 and 6 measures q1 and q2
- Step 7 and 8 rebuild the value in q3, according to the values measured

q1	q2	q3
110)		
101}		
011)		
000}		
step 3:		

CNOT | (q1, q2)

q2

q2

10

qЗ

qЗ

 $|1\rangle$

0)

q1

|111)

|110) |101)

|100) |011)

|010) |001)

|000) step 4:

H | q1

q1

 $|1\rangle$

step 7:

CNOT | (q2, q3)

step 2: CNOT | (q2, q3)

q1	q2	q3
{1}	11}	
	10}	
	01)	
	00)	

step 5: Measure | q1

Discussion

Most visual approach to quantum computing relies on Bloch sphere or complex plane (CP)

- We showed that set visualization is another possibility
- The proposed state visualization is unique
 - Different visual representations imply different states

Interesting for teaching quantum computing

- Quantum theory is known to be unintuitive
- Allows an empirical and experimental "trial and error" approach to quantum computing
 - e.g. testing quantum teleportation on different initial states, or testing modified algorithms ("what about swapping step 7 and 8?")

- **Use and evaluation in education**
- Integration in ProjectQ
- Extension to other quantum computing paradigm, beyond quantum circuits

Questions?

References:

[Rainbow Boxes] : Lamy JB, Berthelot H, Favre M, Ugon A, Duclos C, Venot A. Using visual analytics for presenting comparative information on new drugs. J Biomed Inform 2017;71:58-69

[ProjetQ] : Steiger DS, Häner T, Troyer M. ProjectQ: An open source software framework for quantum computing. Quantum, 2018;2:49