An iconic approach to the browsing of medical terminologies

Jean-Baptiste Lamy, Van Bui Thuy, Agnès Lillo-Le Louët, Cédric Bousquet

This work was supported by the French National Research Agency (ANR) through the Pegase project [grant number ANR-16-CE23-0011].

LIMICS
Université Paris 13, Sorbonne Paris Cité, 93017 Bobigny
Sorbonne Universités, Paris
INSERM UMRS 1142
Introduction

Medical terminologies: the basis of interoperability in medicine
- But difficult for a Humans to find the right term in 10,000+ terms!

In pharmacovigilance, experts often perform searches in case database
- e.g. find all cases of “renal abscess” associated with drug X
- Adverse drug events are coded in MedDRA

Problems:
- Search must be exhaustive, but natural language is very precise
- Synonymy, polysemy, false friends: “tumor of cardia”
- It is also difficult to obtain an overview of a terminology

=> we developed since 11 years VCM, an iconic language for representing medical concepts
- Not as precise as text, but useful for enriching texts and facilitate searches
- Previously applied to drug knowledge, electronic health records, decision support systems

Objective: propose a iconic interface for browsing medical terminologies
Introduction

➡️ Medical terminologies: the basis of interoperability in medicine
 ✦ But difficult for humans to find the right term

➡️ In pharmacovigilance, experts often perform searches
 ✦ e.g. find all cases of “renal abscess” associated with drug X
 ✦ Adverse drug events are coded in MedDRA
 ✦ Problems:
 - Search must be exhaustive, but natural language is very precise
 - Synonymy, polysemy, false friends: “tumor of cardia”
 - It is also difficult to obtain an overview of a terminology

➡️ => we developed since 11 years VCM, an iconic language for representing medical concepts
 ✦ Not as precise as text, but useful for enriching texts and facilitate searches
 ✦ Previously applied to drug knowledge, electronic health records, decision support systems

➡️ Objective: propose an iconic interface for browsing medical terminologies
Medical terminologies: the basis of interoperability in medicine
But difficult for a Humans to find the right term in 10,000+ terms!

In pharmacovigilance, experts often perform searches
- *e.g.* find all cases of "renal abscess" associated
- Adverse drug events are coded in MedDRA

Problems:
- Search must be exhaustive, but natural language is precise
- Synonymy, polysemy, false friends: "tumor of cardia"
- It is also difficult to obtain an overview of a terminology

=> we developed since 11 years VCM, an iconic language for representing medical concepts
- Not as precise as text, but useful for enriching texts and facilitate searches
- Previously applied to drug knowledge, electronic health records, decision support systems

Objective: propose an iconic interface for browsing medical terminologies
Existing approaches for browsing and searching medical terminologies

- **Navigation in a hierarchy (tree)**
 - Long and tedious, user is rapidly lost in the tree
 - Not well-suited for multiaxial terminologies (including MedDRA)
 - Overview is limited to a single level
Existing approaches for browsing and searching medical terminologies

Navigation in a hierarchy (tree)
- Long and tedious, user is rapidly lost in the tree
- Not well-suited for multiaxial terminologies (including MedDRA)
- Overview is limited to a single level

Lexical search with keywords (e.g. “renal abscess”)
- Synonyms: “kidney abscess”
- Hyponyms/hypernyms: “abscess perinephric”
- Polysemy: “auricular” matches both heart and ear-related terms

Brown EG. Methods and pitfalls in searching drug safety databases utilising the Medical Dictionary for Regulatory Activities (MedDRA). Drug Saf 2003
Existing approaches for browsing and searching medical terminologies

- **Navigation in a hierarchy (tree)**
 - Long and tedious, user is rapidly lost in the tree
 - Not well-suited for multiaxial terminologies (including MedDRA)
 - Overview is limited to a single level

- **Lexical search with keywords (e.g. “renal abscess”)**
 - Synonyms: “kidney abscess”
 - Hyponyms/hypernyms: “abscess perinephric”
 - Polysemy: “auricular” matches both heart and ear-related terms

- **Post-coordination with compositional terminologies**
 - [Cornet, Lee, Souvignet]
 - “renal abscess” => renal + abscess
 - But it requires to enter complex queries
 - => “Visual post-coordination” with VCM
An iconic language for medical concepts [BMC]
- Symptoms
- Disorders
- Treatments
- Exams
- Adverse effects

Combinatorial grammar
- 150 pictograms
- 5 colors
- 30 shapes

=> thousands of icons

A formal semantics, based on an OWL 2.0 ontology [KBS]
VCM
(Visualization of Concepts in Medicine)

- An iconic language for medical concepts [BMC]
 - Symptoms
 - Disorders
 - Treatments
 - Exams
 - Adverse effects

- Combinatorial grammar
 - 150 pictograms
 - 5 colors
 - 30 shapes

 => thousands of icons

- A formal semantics, based on an OWL 2.0 ontology [KBS]
VCM
(Visualization of Concepts in Medicine)

➤ An iconic language for medical concepts [BMC]
- Symptoms
- Disorders
- Treatments
- Exams
- Adverse effects

➤ Combinatorial grammar
- 150 pictograms
- 5 colors
- 30 shapes

➤ => thousands of icons

➤ A formal semantics, based on an OWL 2.0 ontology [KBS]
VCM
(Visualization of Concepts in Medicine)

An iconic language for medical concepts [BMC]
- Symptoms
- Disorders
- Treatments
- Exams
- Adverse effects

Combinatorial grammar
- 150 pictograms
- 5 colors
- 30 shapes

=> thousands of icons

A formal semantics, based on an OWL 2.0 ontology [KBS]
Methods: Model mapping MedDRA to VCM

OWL ontology including:
- ~70,000 MedDRA terms and ~2,400 VCM icons
- ~530,000 RDF triples (46 Mb)
- $\mathcal{ALILF}(D)$ description logics family

MedDRA to VCM mapping [MIE 2018]

Designed with Owlready ontology-oriented programming module
- Translate the ontology to an SQL database
- Support full-text search

MedDRA term

<table>
<thead>
<tr>
<th>level</th>
<th>code</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>{SOC, HLGT, HLT, PT, LLT}</td>
<td>string</td>
<td>string</td>
</tr>
</tbody>
</table>

Icon

<table>
<thead>
<tr>
<th>has_part</th>
</tr>
</thead>
</table>

Pictogram

<table>
<thead>
<tr>
<th>has_icon</th>
</tr>
</thead>
</table>

child_of / parent_of

French Book available on Owlready!
Methods: Search strategies

- **Lexical search**
 - Search with one or more keywords
 - Auto-completion
 - Uses Owlready / SQLite3 implementation

Type one or more keywords then enter:
Methods: Search strategies

- **Lexical search**
 - Search with one or more keywords
 - Auto-completion
 - Uses Owlready / SQLite3 implementation

- **Iconic search**
 - Select one or more pictograms
 - From the 37 most generic pictograms in VCM
 - Organized on “Mister VCM”, an anatomical schema
 - If several pictograms are selected, their intersection is considered
Methods: Search strategies

Lexical search
- Search with one or more keywords
- Auto-completion
- Uses Owlready / SQLite3 implementation

Iconic search
- Select one or more pictograms
- From the 37 most generic pictograms in VCM
- Organized on “Mister VCM”, an anatomical schema
- If several pictograms are selected, their intersection is considered

Hierarchical search
- Limited to the ability to filter by depth
- 5 depth levels in MedDRA
Methods: Search strategies

- **Lexical search**
 - Search with one or more keywords
 - Auto-completion
 - Uses Owlready / SQLite3 implementation

- **Iconic search**
 - Select one or more pictograms
 - From the 37 most generic pictograms in VCM
 - Organized on “Mister VCM”, an anatomical schema
 - If several pictograms are selected, their intersection is considered

- **Hierarchical search**
 - Limited to the ability to filter by depth
 - 5 depth levels in MedDRA

The 3 strategies can be used alone or in combination, in any order.
Methods: Search algorithm

```python
function lexico_icono_hierarchical_search(keywords, pictograms, selected_levels):
    if only keywords (i.e. pictograms = ∅):
        terms = { t such that MedDRA(t) and match(t.label, keyword) and t.levels ∈ selected_levels }  
        icons = { i such that Icon(i) and ∃ t ∈ terms with has_icon(t, i) }
    else if only pictograms (i.e. keywords = ∅):
        icons = { i such that Icon(i) and ∀ p ∈ pictograms we have has_part(i, p) }
        terms = { t such that MedDRA(t) and t.levels ∈ selected_levels and ∃ i ∈ icons with has_icon(t, i) }  
        icons = { i such that i ∈ icons and ∃ t ∈ terms with has_icon(t, i)}
    else (both keywords and pictograms):
        terms = { t such that MedDRA(t) and match(t.label, keyword) and t.levels ∈ selected_levels }  
        icons = { i such that Icon(i) and ∀ p ∈ pictograms we have has_part(i, p) }
        terms = { t such that t ∈ terms and ∃ i ∈ icons with has_icon(t, i) }
        icons = { i such that i ∈ icons and ∃ t ∈ terms with has_icon(t, i)}
    return (icons, terms)
```
Methods: Display of the search results

Search results are often numerous!

- Use VCM Icons to organize them

Icons associated with the retrieved MedDRA terms are displayed

- Icons are sorted by number of terms
- At most 5 terms are displayed per icons
 - Click on them to display the entire list
- Icons are grouped according to inheritance rules in VCM
 - e.g. Icon for “renal blood vessel occlusion” is grouped under icon for “renal circulation”

<table>
<thead>
<tr>
<th>Icon</th>
<th>Terms</th>
</tr>
</thead>
</table>
| ![icon](image1.png) | + Adult polyglucosan body disease (PT)
+ Automatic bladder (PT)
+ Bladder dilatation (PT)
+ Bladder disorder (PT)
+ Bladder diverticulum (PT)
... (207 terms) |
| ![icon](image2.png) | + Accessory kidney (PT)
+ Aminoaciduria (PT, 2 icons)
+ Aplasia pure red cell (PT, 3 icons)
+ Benign familial haematuria (PT, 2 icons)
+ Berdon’s syndrome (PT, 2 icons)
... (156 terms and 8 child icons) |
| ![icon](image3.png) | + Adenoviral haemorrhagic cystitis (PT)
+ Aorta hypoplasia (PT, 2 icons)
+ Atrophie blanche (PT, 3 icons)
+ Bladder hyperaemia (PT)
+ Bladder telangiectasia (PT)
... (144 terms and 41 child icons) |
| ![icon](image4.png) | + Autoimmune nephritis (PT)
+ Bladder granuloma (PT)
+ Bladder irritation (PT)
+ C3 glomerulopathy (PT)
+ Chemical cystitis (PT)
... (138 terms and 21 child icons) |
Results

⚠ Good performances

⚠ < 0,6 seconds (on a local server, online demo is slower)

⚠ Demo!

Example of a search combining keywords, icons and depth levels:

Type one or more keywords then enter:

abscess

Abscess
Abscess NOS
Abscess jaw
Abscess leg
Eye abscess
Abscess hand
Abscess limb
Abscess neck
Abscess oral

331 MedDRA terms found:

- Amoebic brain abscess (PT)
- Bacterial abscess central nervous system (PT)
- Brain abscess (PT)
- Central nervous system abscess (PT)
- Dural abscess (PT)
 ... (39 terms and 5 child icons)

- Bartholin's abscess (PT)
- Breast abscess (PT)
- Clitoris abscess (PT)
- Fallopian tube abscess (PT)
- Genital abscess (PT)
 ... (35 terms and 9 child icons)

- Abscess drainage (PT)
- Abscess management (PT)
- Abdominal wall abscess drainage (LLT)
- Abscess breast drainage (LLT)
- Abscess cavity curettage (LLT)
 ... (33 terms)

- Abscess oral (PT)
- Gingival abscess (PT)
- Nasal abscess (PT)
- Peritonsillar abscess (PT)
- Pharyngeal abscess (PT)
 ... (26 terms and 4 child icons)

- Perinephric abscess (PT)
- Renal abscess (PT)
- Urachal abscess (PT)
- Ureter abscess (PT)
- Urethral abscess (PT)
 ... (17 terms and 3 child icons)

- Abscess (PT)
- Abscess limb (PT)
- Abscess rupture (PT)
- Abscess soft tissue (PT)
- Abscess sterile (PT)
 ... (38 terms)

- Abscess sweat gland (PT)
- Periumbilical abscess (PT)
- Subcutaneous abscess (PT)
- Abscess apocrine gland (LLT)
- Abscess of external ear (LLT)
 ... (33 terms and 4 child icons)

- Abscess intestinal (PT, 2 icons)
- Anal abscess (PT)
- Appendiceal abscess (PT)
- Colonic abscess (PT)
- Douglas' abscess (PT, 3 icons)
 ... (27 terms and 3 child icons)

- Abdominal abscess (PT)
- Abdominal wall abscess (PT)
- Abscess intestinal (PT, 2 icons)
- Douglas' abscess (PT, 3 icons)
- Mesenteric abscess (PT, 2 icons)
 ... (20 terms)

- Biliary abscess (PT)
- Gallbladder abscess (PT)
- Hepatosplenic abscess (PT, 2 icons)
- Liver abscess (PT)
- Perihepatic abscess (PT, 3 icons)
 ... (13 terms and 3 child icons)
Example of a search combining keywords, icons and depth levels:

Type one or more keywords then enter: abscess

And/or click on icons:

Show levels: ☐ SOC
☐ HLGT
☐ HLT
☐ PT
☐ LLT

17 MedDRA terms found: +++
- Abscess kidney (LLT)
- Abscess perinephric (LLT)
- Peri-nephric abscess (LLT)
- Peri-nephric abscess NOS (LLT)
- Perinephric abscess (PT)
- Renal abscess (PT)
- Renal abscess NOS (LLT)
- Renal and perinephric abscess (LLT)
- Urachal abscess (PT)
- Urinary tract abscess (PT)
- Peri-urethral abscess (LLT)
- Peri-urethral abscess NOS (LLT)
- Skene's duct abscess (LLT)
- Urethral abscess (PT)
- Urinary bladder abscess (PT)
- Ureter abscess (PT)
- Ureter abscess NOS (LLT)
Example of an iconic search on the eye:

<table>
<thead>
<tr>
<th>3650 MedDRA terms found:</th>
<th>MedDRA terms found:</th>
<th>3650 MedDRA terms found:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDS retinopathy (2 icons)</td>
<td>Abducent nerve operation</td>
<td>Acute haemorrhagic conjunctivitis (2 icons)</td>
</tr>
<tr>
<td>Abnormal sensation in eye</td>
<td>Acquired epiblepharon</td>
<td>Anterior chamber angle neovascularisation</td>
</tr>
<tr>
<td>Accommodation disorder</td>
<td>Acute haemorrhagic conjunctivitis (2 icons)</td>
<td>Anterior segment ischaemia</td>
</tr>
<tr>
<td>Acquired corneal dystrophy</td>
<td>Anomaly of orbit, congenital</td>
<td>Arteriosclerotic retinopathy</td>
</tr>
<tr>
<td>Acquired lenticous</td>
<td>... (767 terms and 25 child icons)</td>
<td>Choroidal effusion ... (312 terms and 15 child icons)</td>
</tr>
<tr>
<td>... (1059 terms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abscess of eyelid</td>
<td>Blindness traumatic (2 icons)</td>
<td>Aniridia</td>
</tr>
<tr>
<td>Acanthamoeba keratitis</td>
<td>Bowman's membrane injury</td>
<td>Anomaly of orbit, congenital</td>
</tr>
<tr>
<td>Acute haemorrhagic conjunctivitis (2 icons)</td>
<td>Cataract operation complication</td>
<td>... (225 terms and 8 child icons)</td>
</tr>
<tr>
<td>Adenoviral conjunctivitis</td>
<td>Cataract traumatic</td>
<td></td>
</tr>
<tr>
<td>Bacterial blepharitis</td>
<td>Chorioretinal scar</td>
<td></td>
</tr>
<tr>
<td>... (293 terms and 23 child icons)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute myopia</td>
<td>Anterior chamber cell</td>
<td>Blood clot</td>
</tr>
<tr>
<td>Amaurosis</td>
<td>Anterior chamber fibrin</td>
<td>Bilateral myopia</td>
</tr>
<tr>
<td>Amaurosis fugax (2 icons)</td>
<td>Anterior chamber flare</td>
<td>Bilateral retinal detachment</td>
</tr>
<tr>
<td>Amblyopia</td>
<td>Anterior chamber inflammation</td>
<td></td>
</tr>
<tr>
<td>Amblyopia alcohol (2 icons)</td>
<td>Aqueous fibrin</td>
<td>Bilateral retinal detachment</td>
</tr>
<tr>
<td>... (218 terms and 6 child icons)</td>
<td>... (206 terms and 11 child icons)</td>
<td></td>
</tr>
<tr>
<td>Benign neoplasm of choroid</td>
<td>Angiogram retina</td>
<td>Bilateral retinal detachment</td>
</tr>
<tr>
<td>Benign neoplasm of conjunctiva</td>
<td>Angiogram retina abnormal</td>
<td></td>
</tr>
<tr>
<td>Benign neoplasm of cornea</td>
<td>Biopsy cornea</td>
<td>Bilateral retinal detachment</td>
</tr>
<tr>
<td>Benign neoplasm of eye</td>
<td>Biopsy cornea abnormal</td>
<td>Bilateral retinal detachment</td>
</tr>
<tr>
<td>Benign neoplasm of eyelid</td>
<td>Biopsy eyelid</td>
<td>Bilateral retinal detachment</td>
</tr>
<tr>
<td>... (150 terms and 19 child icons)</td>
<td>... (137 terms and 9 child icons)</td>
<td></td>
</tr>
<tr>
<td>Anterior capsule contraction</td>
<td>Anterior vitreous hemorrhage</td>
<td></td>
</tr>
<tr>
<td>Anterior chamber collapse</td>
<td>Autoimmune uveitis</td>
<td>Bilateral retinal detachment</td>
</tr>
<tr>
<td>Capsular block syndrome</td>
<td>Birdshot chorioretinopathy</td>
<td></td>
</tr>
<tr>
<td>Cataract operation complication</td>
<td>Neumyestis optica spectrum disorder</td>
<td>Bilateral retinal detachment</td>
</tr>
<tr>
<td>Ciliary zonular dehiscence</td>
<td>Ocular pemphigoid</td>
<td>Bilateral retinal detachment</td>
</tr>
<tr>
<td>... (65 terms and 11 child icons)</td>
<td>... (39 terms and 6 child icons)</td>
<td></td>
</tr>
<tr>
<td>Alport's syndrome (3 icons)</td>
<td>Eye pain</td>
<td>Bilateral retinal detachment</td>
</tr>
<tr>
<td>Blau syndrome (3 icons)</td>
<td>Eyelid pain</td>
<td>Bilateral retinal detachment</td>
</tr>
<tr>
<td>Carney complex (4 icons)</td>
<td>Aching eye socket</td>
<td>Bilateral retinal detachment</td>
</tr>
<tr>
<td>Congenital optic nerve anomaly</td>
<td>Blepharal pain</td>
<td>Bilateral retinal detachment</td>
</tr>
<tr>
<td>Cri du Chat syndrome (2 icons)</td>
<td>Dull eye pain</td>
<td>Bilateral retinal detachment</td>
</tr>
<tr>
<td>... (30 terms and 4 child icons)</td>
<td>... (28 terms)</td>
<td></td>
</tr>
<tr>
<td>Albinism</td>
<td>Dark circles under eyes</td>
<td>Bilateral retinal detachment</td>
</tr>
<tr>
<td>Endocrine ophthalmopathy (2 icons)</td>
<td>Device optical issue</td>
<td>Bilateral retinal detachment</td>
</tr>
<tr>
<td>Hypercarotinaemia</td>
<td>Glassy eyes</td>
<td>Bilateral retinal detachment</td>
</tr>
<tr>
<td>Kayser-Fleischer ring (2 icons)</td>
<td>Immune recovery uveitis</td>
<td>Bilateral retinal detachment</td>
</tr>
<tr>
<td>Lecithin-cholesterol acyltransferase deficiency (2 icons)</td>
<td>Subacute myelo-optic neuropathy (2 icons)</td>
<td>Bilateral retinal detachment</td>
</tr>
<tr>
<td>... (15 terms and 3 child icons)</td>
<td>... (8 terms and 2 child icons)</td>
<td></td>
</tr>
<tr>
<td>EPCOF examination</td>
<td>Chronic enlargement of lacrimal gland</td>
<td>Bilateral retinal detachment</td>
</tr>
<tr>
<td>Lid parallel conjunctival folds examination</td>
<td>Corneal hypertrophy</td>
<td>Bilateral retinal detachment</td>
</tr>
<tr>
<td>Slit-lamp examination</td>
<td>Lacrimal gland enlargement</td>
<td>Bilateral retinal detachment</td>
</tr>
<tr>
<td>Slit-lamp tests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slit-lamp tests abnormal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glaucma drug therapy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example of an iconic search on the eye:

3650 MedDRA terms found:

- AIDS retinopathy (2 icons)
- Abnormal sensation in eye
- Accommodation disorder
- Acquired corneal dystrophy
- Acquired lenticonus
- ... (1059 terms)

- Abscess of eyelid
- Acanthamoeba keratitis
- Acute haemorrhagic conjunctivitis (2 icons)
- Adenoviral conjunctivitis
- Bacterial blepharitis
- ... (293 terms and 23 child icons)

- Acute myopia
- Amaurosis
- Amaurosis fugax (2 icons)
- Amblyopia
- Amblyopia alcohol (2 icons)
- ... (218 terms and 6 child icons)

- Benign neoplasm of choroid
- Benign neoplasm of conjunctiva
- Benign neoplasms of cornea

33 MedDRA terms found:

- Allergic keratitis
- Allergic keratoconjunctivitis
- Allergic rhinitis due to pollen (2 icons)
- Atopic cataract
- Atopic keratoconjunctivitis
- Birch pollen allergy (2 icons)
- Blepharitis allergic (2 icons)
- Contact and allergic dermatitis of eyelid (2 icons)

- Eye allergy
- Grass allergy (2 icons)
- Hay fever (2 icons)
- Pollen allergy (2 icons)
- Poliomyelitis (2 icons)
- Ragweed allergy (2 icons)
- Rhinitis seasonal (2 icons)
- Seasonal allergic rhinitis (2 icons)
- Seasonal allergy (2 icons)
- Seasonal conjunctivitis (2 icons)
- Seasonal nasopharyngitis (2 icons)

- Conjunctivitis allergic
- Giant papillary conjunctivitis
- Scleritis allergic
- Acute atopic conjunctivitis
- Allergic blepharoconjunctivitis
- ... (12 terms)

- Oculo-respiratory syndrome (3 icons)
- Oculorespiratory syndrome (3 icons)

- Acute haemorrhagic conjunctivitis (2 icons)
- Anterior chamber angle neovascularisation
- Anterior segment ischaemia
- Arteriosclerotic retinopathy
- Choroidal effusion
- ... (312 terms and 15 child icons)

- Albinism
- Alstroem syndrome (2 icons)
- Amblyopia congenital (2 icons)
- Aniridia
- Anomaly of orbit, congenital
- ... (225 terms and 8 child icons)

- Abducting nerve operation
- Amblyopia therapy
- Biopac eye surgery
- Blepharoplasty
- ... (170 terms and 9 child icons)

- Angle closure glaucoma
- Borderline glaucoma
- Developmental glaucoma
- Diabetic glaucoma (2 icons)
- Exfoliation glaucoma
- ... (79 terms)

- Allergic keratitis
- Atopic cataract
- Atopic keratoconjunctivitis
- Blepharitis allergic (2 icons)
- Conjunctivitis allergic
- ... (33 terms and 3 child icons)

- Acquired pigmented retinopathy
- Amblyopia alcohol (2 icons)
- Amblyopia tobacco
- Chemical burns of eye
- Chemical eye injury
- ... (23 terms and 4 child icons)

- Cataract associated with radiation and other physical influences
- Cataract radiation
- Radiation cataract
- Radiation corneal injury
- Radiation retinopathy
- ... (2 child icons)

- Acromegaly
- Acromegaly (2 icons)
- Acromegaly (3 icons)
- Acromegaly (4 icons)
- Acromegaly (5 icons)

- Mikulicz's disease (2 icons)
- Mikulicz's syndrome (2 icons)
Expert opinions

The interface was tested by 2 pharmacovigilance experts

- Very few pharmacovigilance experts => difficult to recruit

Purely iconic search: not so interesting...

Combined iconic and lexical search: very interesting for exhaustive searches

- Can increase the sensibility of the search, because VCM pictograms are broader than keywords

“VCM is an Esperanto of medical language”

Useful for students and non-experts such as clinical research associates (CRA)

- e.g. VCM icons explicitly represent “cardia” as related to the stomach

Tumor of cardia
Discussion

- An original approach for browsing and searching medical terminologies
 - A new application for the VCM iconic language
 - Facilitate exhaustive searches
 - Overview of the terminology

- Limitations
 - Requires to map the terminology with VCM
 - Requires to train users in VCM icons

- In the literature [Massari et al.]
 - Meta-terms based on medical specialties for facilitating searches
 - But textual and not iconic
Conclusion

➡️ Icons are a new and promising approach for browsing and searching medical terminologies

➡️ Perspectives

🔗 Evaluation of the interface in a pharmacovigilance setting
🔗 Adaptation to other terminologies
 - e.g. for coding electronic health records (EHR): ICD10, SNOMED CT
🔗 Use in medical education
References

[AIM]: Lamy JB. Owlready: Ontology-oriented programming in Python with automatic classification and high level constructs for biomedical ontologies. Artif Intell Med 2017;80:11-28