PyMedTermino:
an open-source generic API
for advanced terminology services

Jean-Baptiste LAMY
Alain VENOT
Catherine DUCLOS

LIMICS, Université Paris 13, Sorbonne Paris Cité, Université Paris 6,
INSERM UMR_S 1142, 74 rue Marcel Cachin, 93017 Bobigny, France

MIE 2015 – Madrid 5/2015
Introduction

- Terminological resources play a crucial role in medical informatics research and software applications but...

- Heterogeneity between terminologies:
 - Monoaxial vs multiaxial
 - Single vs multiple language
 - Pre- vs post-coordinated
 - Textual vs graphical

Child game
Introduction

- **PyMedTermino**: a generic API for a multi-terminology multilingual terminology service
- Mainly for research and educational purposes
 - Batch processing of terminologies
 - Advanced terminological operations
- Implemented in the Python programming language
- Support 5 terminological resources + UMLS
- “Write once, code with every terminologies”

- Based on the terminological services that were developed for managing VCM icons (Visualization of Concept in Medicine)
 - VCM icons are post-coordinated
 - Mappings with other terminologies
Material: the VCM iconic language

A compositional language

- Color is for the temporal aspect (past, current or risk of disorder)
- Central pictogram is for anatomico-functional location
- Shape modifiers are for generic pathological processes and transversal anatomical structures

http://vcm.univ-paris13.fr/
Materials: terminological resources

- **ICD10**
 International Classification of Diseases
 version 10-2010 (English, French)

- **SNOMED CT**
 Systematized NOmenclature of MEDicine
 Clinical Terms
 version 2014-01-31 (English)

- **UMLS**
 Unified Medical Language System
 version 2012AA (Multilingual)

- **VCM icons**
 Visualization of Concept in Medicine
 version 2014 (Graphical, post-coordinated)

- **MedDRA**
 Medical Dictionary for Regulatory Activities
 version 17.1 (Multilingual)

- **CDF**
 CoDiFication from the Thériaque drug databank
 version 2014 (French)

Used for designing the generic model

Added after the design of the generic model for validation
Basic and derived operations in the generic model

<table>
<thead>
<tr>
<th>On a terminology</th>
<th>Iterate over all concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Obtain the first level concepts</td>
</tr>
<tr>
<td></td>
<td>Obtain a concept from a code</td>
</tr>
<tr>
<td></td>
<td>Free-text search</td>
</tr>
<tr>
<td>On a concept</td>
<td>Obtain the code of the concept</td>
</tr>
<tr>
<td></td>
<td>Obtain the preferred term in a given language</td>
</tr>
<tr>
<td></td>
<td>Obtain all the terms in a given language</td>
</tr>
<tr>
<td></td>
<td>Obtain parent concepts</td>
</tr>
<tr>
<td></td>
<td>Obtain children concepts</td>
</tr>
<tr>
<td></td>
<td>Obtain the lists of available (non is-a) relations</td>
</tr>
<tr>
<td></td>
<td>Obtain the values of a given relation</td>
</tr>
<tr>
<td></td>
<td>Test if a concept is a descendant of another concept</td>
</tr>
<tr>
<td></td>
<td>Iterate over ancestor concepts, with or without doubles</td>
</tr>
<tr>
<td></td>
<td>Iterate over descendant concepts, with or without doubles</td>
</tr>
<tr>
<td>On a set of concepts</td>
<td>Find all concepts in the set that are, or are not, another concept</td>
</tr>
<tr>
<td></td>
<td>Keep only the most generic or the most specific concepts in the set</td>
</tr>
<tr>
<td></td>
<td>Compute the lowest common ancestors</td>
</tr>
<tr>
<td></td>
<td>Test if set A is a semantic subset of set B</td>
</tr>
<tr>
<td></td>
<td>Perform usual set operations (union, intersection, difference, etc)</td>
</tr>
<tr>
<td>On a mapping</td>
<td>Map a concept to another terminology</td>
</tr>
<tr>
<td></td>
<td>Map a set of concepts</td>
</tr>
<tr>
<td></td>
<td>Create the reverse mapping</td>
</tr>
<tr>
<td></td>
<td>Chain the mapping to another mapping, resulting in a new mapping</td>
</tr>
</tbody>
</table>
Basic and derived operations in the generic model

On a terminology
- Iterate over all concepts
- Obtain the first level concepts
- Obtain a concept from a code
- Free-text search

On a concept
- Obtain the code of the concept
- Obtain the preferred term in a given language
- Obtain all the terms in a given language
- **Obtain parent concepts**
- Obtain children concepts
- Obtain the lists of available (non is-a) relations
- Obtain the values of a given relation
- Test if a concept is a descendant of another concept
- **Iterate over ancestor concepts, with or without doubles**
- Iterate over descendant concepts, with or without doubles

On a set of concepts
- Find all concepts in the set that are, or are not, another concept
- Keep only the most generic or the most specific concepts in the set
- **Compute the lowest common ancestors**
- Test if set A is a semantic subset of set B
- Perform usual set operations (union, intersection, difference, etc)

On a mapping
- Map a concept to another terminology
- Map a set of concepts
- Create the reverse mapping
- Chain the mapping to another mapping, resulting in a new mapping
General architecture

- No big database (e.g. UMLS): SQL is not sufficient for terminology (no recursion)
- **Basic operations**, implemented for each terminology using:
 - A terminology-specific database, or
 - Post-coordination algorithms
- **Derived operations**, whose implementation depends on the terminology structure
Generic model

- Five main classes:
 - Mapping
 - Terminology
 - Concept
 - Term
 - Concepts (set of concepts)
Examples of use

- Command-line interface or program
- Search SNOMED CT for *ulcer of duodenum*:

```python
>>> SNOMEDCT.search("ulcer duoden*")
[Snomed6761005]  # Familial hypergastrinemic duodenal ulcer (disorder)
, Snomed12355008 # Duodenal ulcer with hemorrhage, with perforation AND with obstruction (disorder)
, Snomed12847006 # Acute duodenal ulcer with hemorrhage (disorder)
, Snomed15115006 # Duodenal ulcer with hemorrhage AND with perforation but without obstruction (disorder)
, Snomed16516008 # Familial duodenal ulcer associated with rapid gastric emptying (disorder)
, Snomed18169007 # Duodenal ulcer without hemorrhage AND without perforation but with obstruction (disorder)
... ] # 71 results :-(
```
Examples of use

- Search and use the “keep most generic” derived operation:

```python
>>> concepts = Concepts(SNOMEDCT.search("ulcer duoden*"))
>>> concepts.keep_most_generic()
>>> concepts
Concepts([SNOMEDCT[275127005] # Family history: Duodenal ulcer,
        SNOMEDCT[275547005] # History of duodenal ulcer,
        SNOMEDCT[473216000] # Suture plication of artery for control of duodenal ulcer hemorrhage (procedure),
        SNOMEDCT[314627002] # Endoscopic injection hemostasis of duodenal ulcer (procedure),
        SNOMEDCT[413213005] # Ulcerogenic deformed duodenum,
        SNOMEDCT[173887007] # Duodenal ulcer operation,
        SNOMEDCT[51868009] # Duodenal ulcer disease (disorder)]) # 7 results :)```
Examples of use

- Mapping example:

  ```
 >>> SNOMEDCT[51868009] >> VCM
 Concepts([VCM[u"current--lesion--intestine"] # ulcer of intestine])
  ```

- Chaining mappings:

  ```
 >>> ICD10["I10"] >> SNOMEDCT >> VCM
 Concepts([VCM[u"current--hyper-vessel_bp"] # hypertension])
  ```
Examples of use

Search for all **clinical findings** (id 404684003) in SNOMED CT

    with “hemorrhag” in their term

    but not associated with the **hemorrhage morphology** (id 50960005)

Script:
```
from pymedtermino.snomedct import *
for concept in SNOMEDCT.search("hemorrhag"):
 if not concept.is_a(SNOMEDCT[404684003]): continue
 has_hemorrhage = False
 for hemorrhage in SNOMEDCT[50960005].self_and_descendants_no_double():
 if hemorrhage in concept.associated_morphology:
 has_hemorrhage = True
 break
 if not has_hemorrhage: print(concept)
```

Output:
```
SNOMEDCT[37442009] # Peptic ulcer without hemorrhage AND without perforation (disorder)
SNOMEDCT[240523007] # Viral hemorrhagic fever (disorder)
... (154 concepts listed)
```
Discussion

- PyMedTermino has been used in research projects:
  - **VCM** (iconic terminology)
  - **SiFaDo** (tools for facilitating medical coding, ANR)
  - **VIIIP** (comparison of new drugs with older ones, ANSM)

- The advanced terminological operations we proposed were useful
  - *e.g.* keep most generic, operations on a set of concepts

- PyMedTermino has been used in training sessions with students in master of biomedical informatics (M1 and M2)
  - Students can compare ICD10 and SNOMED CT
  - Technically more interesting than navigating in a terminology browser

- Main limits: quality of UMLS mappings, available only for Python
Discussion

- In the literature, Most terminological services
  - propose similar basic operations [Pathak J]
  - are aimed at browsing terminologies, such as Hetop [Grosjean J]
  - or at hospital use (rather than research and education)

- PyMedTermino is a Free Software (GNU LGPL license)
  - [http://pypi.python.org/pypi/PyMedTermino](http://pypi.python.org/pypi/PyMedTermino)
  - Terminology contents are not included (due to copyright)
  - But PyMedTermino includes:
    - Links for free downloads of terminologies (ICD10, SNOMED CT, etc)
    - Scripts for converting terminologies into optimized SQLite databases
    - The generic API previously described, built over these databases
References


